В этом случае вы хотите избежать отрицательного аргумента в вашем квадратном корне, поэтому вы устанавливаете:
так что:
спектр будет все
Ваша функция может иметь значение
график {sqrt (x-10) -5,33, 76,87, -10,72, 30,37}
Функции f (x) = - (x - 1) 2 + 5 и g (x) = (x + 2) 2 - 3 были переписаны с использованием метода завершающего квадрата. Является ли вершина для каждой функции минимумом или максимумом? Объясните свои аргументы в пользу каждой функции.
Если мы напишем квадратик в форме вершины: y = a (x-h) ^ 2 + k, то: bbacolor (white) (8888) - это коэффициент x ^ 2, bbhcolor (white) (8888) - ось симметрии. bbkcolor (white) (8888) - максимальное / минимальное значение функции. Также: если a> 0, то парабола будет иметь форму uuu и будет иметь минимальное значение. Если a <0, то парабола будет иметь форму nnn и будет иметь максимальное значение. Для заданных функций: a <0 f (x) = - (x-1) ^ 2 + 5color (white) (8888) это имеет максимальное значение bb5 a> 0 f (x) = (x + 2) ^ 2-3 цвета (белый) (8888888) минимальное значение bb (-3)
Что такое (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) SQRT (5))?
2/7 Мы берем, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5-sqrt5-sqrt3-sqrt3-sqrt3-sqrt3-sqrt3-sqrt3-sqrtr-sq ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3)) ^ 2- (sqrt5) ^ 2) = (отменить (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - отменить (2sqrt15) -5 + 2 * 3 + cancel (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Обратите внимание, что ес
Каков диапазон функции y = sqrt (1-cosxsqrt (1-cosx (sqrt (1-cosx ...... oo)?
Мне нужно перепроверить. >