Ответ:
Наклон перпендикулярной линии
Объяснение:
Дано -
Две точки на данной линии.
# X_1 = -2 #
# Y_1 = 6 #
# X_2 = -7 #
# Y_2 = 4 #
Наклон данной линии
# = (Y_2-y_1) / (x_2-x_1) = (4-6) / (- 7 - (- 2)) = (- 2) / (- 5) = 2/5 #
Наклон перпендикулярной линии
Две линии перпендикулярны, если
найти
# 2/5 xx m_2 = -1 #
# m_2 = -1 xx 5/2 = -5 / 2 #
Ответ:
Объяснение:
Найти наклон линии через точки по формуле
Каков наклон любой линии, перпендикулярной линии, проходящей через (5,0) и (-4, -3)?
Наклон линии, перпендикулярной линии, проходящей через (5,0) и (-4, -3), будет равен -3. Наклон перпендикулярной линии будет равен отрицательному значению, обратному наклону исходной линии. Мы должны начать с нахождения наклона исходной линии. Мы можем найти это, взяв разницу в y, деленную на разницу в x: m = (0 - (- 3)) / (5 - (- 4)) = (3) / 9 = 1/3 Теперь, чтобы найти наклон перпендикулярной линии, мы просто берем отрицательную обратную величину 1 / 3: -1 / (1/3) = - 1 * 3/1 = -3. Это означает, что наклон прямой, перпендикулярной исходной линии, равен -3.
Каков наклон любой линии, перпендикулярной линии, проходящей через (-3,1) и (5,12)?
Наклон перпендикулярной линии равен -8/11. Наклон линии, проходящей через (-3,1) и (5,12), равен m = (y_2-y_1) / (x_2-x_1) = (12-1) / ( 5 + 3) = 11/8 Произведение наклона перпендикулярных линий = -1:. m * m_1 = -1 или m_1 = -1 / m = -1 / (11/8) = -8/11 Наклон перпендикулярной линии равен -8/11 [Ans]
Каков наклон любой линии, перпендикулярной линии, проходящей через (0,0) и (-1,1)?
1 - это уклон любой линии, перпендикулярной линии. Уклон является повышением по трассе, (y_2 -y_1) / (x_2-x_1). Наклон, перпендикулярный любой линии, является отрицательным обратным. Наклон этой линии отрицателен, поэтому перпендикуляр к ней будет равен 1.