Ответ:
7/11
Объяснение:
Наклон любой линии, перпендикулярной другой, является обратным наклону базовой линии. Уравнение общей линии имеет вид y = mx + b, поэтому набор линий, перпендикулярных этому, будет y = - (1 / m) x + c.
y = mx + b Вычислите уклон m из заданных значений точек, найдите для b значение, используя одно из значений точек, и проверьте свое решение, используя другие значения точек.
Линия может рассматриваться как отношение изменения между горизонтальным (x) и вертикальным (y) положениями. Таким образом, для любых двух точек, определенных декартовыми (плоскими) координатами, такими как те, которые приведены в этой задаче, вы просто устанавливаете два изменения (различия), а затем задаете отношение для получения наклона, m.
Разница по вертикали «у» = у2 - у1 = 14 - 3 = 11
Горизонтальная разница «x» = x2 - x1 = -14 - -7 = -7
Отношение = «подъем над пробегом» или по вертикали по горизонтали = 11 / -7 = -11/7 для склона, м.
Линия имеет общий вид y = mx + b, или вертикальное положение является произведением наклона и горизонтального положения x, плюс точка, где линия пересекает (пересекает) ось x (линия, где z всегда равен нулю Итак, после того как вы вычислили наклон, вы можете поместить любую из двух известных точек в уравнение, оставив нам только неизвестный пересечение «b».
3 = (-11/7) (- 7) + b; 3 = 11 + б; -8 = б
Таким образом, окончательное уравнение у = - (11/7) х - 8
Затем мы проверяем это, подставляя в уравнение другую известную точку:
14 = (-11/7) (- 14) - 8; 14 = 22 - 8; 14 = 14 ПРАВИЛЬНО!
Итак, если наше исходное уравнение у = - (11/7) х - 8, то множество линий, перпендикулярных к нему, будет иметь наклон 7/11.
Каков наклон любой линии, перпендикулярной линии, проходящей через (5,0) и (-4, -3)?
Наклон линии, перпендикулярной линии, проходящей через (5,0) и (-4, -3), будет равен -3. Наклон перпендикулярной линии будет равен отрицательному значению, обратному наклону исходной линии. Мы должны начать с нахождения наклона исходной линии. Мы можем найти это, взяв разницу в y, деленную на разницу в x: m = (0 - (- 3)) / (5 - (- 4)) = (3) / 9 = 1/3 Теперь, чтобы найти наклон перпендикулярной линии, мы просто берем отрицательную обратную величину 1 / 3: -1 / (1/3) = - 1 * 3/1 = -3. Это означает, что наклон прямой, перпендикулярной исходной линии, равен -3.
Каков наклон любой линии, перпендикулярной линии, проходящей через (-3,1) и (5,12)?
Наклон перпендикулярной линии равен -8/11. Наклон линии, проходящей через (-3,1) и (5,12), равен m = (y_2-y_1) / (x_2-x_1) = (12-1) / ( 5 + 3) = 11/8 Произведение наклона перпендикулярных линий = -1:. m * m_1 = -1 или m_1 = -1 / m = -1 / (11/8) = -8/11 Наклон перпендикулярной линии равен -8/11 [Ans]
Каков наклон любой линии, перпендикулярной линии, проходящей через (0,0) и (-1,1)?
1 - это уклон любой линии, перпендикулярной линии. Уклон является повышением по трассе, (y_2 -y_1) / (x_2-x_1). Наклон, перпендикулярный любой линии, является отрицательным обратным. Наклон этой линии отрицателен, поэтому перпендикуляр к ней будет равен 1.