Ответ:
Ответ
Объяснение:
Чтобы вычислить вектор, перпендикулярный двум другим векторам, вы должны вычислить перекрестное произведение.
Позволять
Перекрестное произведение задается определителем
Чтобы проверить это
Мы делаем точечный продукт.
Как точечные продукты
Чтобы вычислить единичный вектор, мы делим на модуль
Какой единичный вектор ортогонален плоскости, содержащей (i + j - k) и (i - j + k)?
Мы знаем, что если vec C = vec A × vec B, то vec C перпендикулярен как vec A, так и vec B. Итак, нам нужно просто найти перекрестное произведение данных двух векторов. Итак, (Хати + Хатдж-Хатк) × (Хати-Хатдж + Хатк) = - Хатк-Хатдж-Хатк + Хати-Хатдж-я = -2 (Хатк + Хатдж) Итак, единичный вектор равен (-2 (Хатк + хэтдж)) / (sqrt (2 ^ 2 + 2 ^ 2)) = - (хэтк + hatj) / sqrt (2)
Какой единичный вектор ортогонален плоскости, содержащей (20j + 31k) и (32i-38j-12k)?
Единичный вектор равен == 1 / 1507,8 <938 992, -640> Вектор, ортогональный 2 векторам на плоскости, вычисляется с помощью определителя | (veci, vecj, veck), (d, e, f), (g, h, i) | где 〈d, e, f〉 и 〈g, h, i〉 2 вектора. Здесь мы имеем veca = 〈0,20,31〉 и vecb = 〈32, -38, -12〉 Следовательно, | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = VECI | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + Век | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) = 38 938 992, -640〉 = vecc Проверка с помощью 2 точек продукты 〈938,992, -640〉. 〈0,20,31〉 = 938 * 0 + 992 * 20-640 * 31 =
Какой единичный вектор ортогонален плоскости, содержащей (29i-35j-17k) и (41j + 31k)?
Единичный вектор равен = 1 / 1540,3 〈-388, -899,1189 vector Вектор, перпендикулярный 2 векторам, рассчитывается с помощью определителя (перекрестное произведение) | (veci, vecj, veck), (d, e, f), (g, h, i) | где 〈d, e, f〉 и 〈g, h, i〉 2 вектора. Здесь мы имеем veca = 〈29, -35, -17〉 и vecb = 〈0,41,31〉 Следовательно, | (veci, vecj, veck), (29, -35, -17), (0,41,31) | = VECI | (-35, -17), (41,31) | -vecj | (29, -17), (0,31) | + Век | (29, -35), (0,41) | = veci (-35 * 31 + 17 * 41) -vecj (29 * 31 + 17 * 0) + veck (29 * 41 + 35 * 0) = 〈- 388, -899,1189〉 = vecc Проверка выполнением 2 точечные продукты 〈-388, -899,1189 〈. 〈29, -35,