Я предполагаю, что
Сначала мы применим правило изменения базы:
Мы можем рассмотреть
Упростим немного:
Там наша производная. Имейте в виду, принимая производные логарифмов без основания
Какова первая производная и вторая производная 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(первая производная)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(вторая производная)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(первая производная)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 года) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 года) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- х ^ -1 + 1) "(вторая производная)"
Что такое вторая производная от х / (х-1) и первая производная от 2 / х?
Вопрос 1 Если f (x) = (g (x)) / (h (x)), то по правилу отношения f '(x) = (g' (x) * h (x) - g (x) * h '(x)) / ((g (x)) ^ 2) Итак, если f (x) = x / (x-1), то первая производная f' (x) = ((1) (x-1) - (x) (1)) / x ^ 2 = - 1 / x ^ 2 = - x ^ (- 2) и вторая производная f '' (x) = 2x ^ -3 Вопрос 2 Если f (x) = 2 / x это может быть переписано как f (x) = 2x ^ -1 и с использованием стандартных процедур для получения производной f '(x) = -2x ^ -2 или, если вы предпочитаете f' (x) = - 2 / х ^ 2
Как объединить одинаковые термины в 3 log x + log _ {4} - log x - log 6?
Применяя правило, согласно которому сумма журналов является журналом продукта (и исправляя опечатку), мы получаем log frac {2x ^ 2} {3}. Предположительно, студент хотел объединить термины в 3 log x + log 4 - log x - log 6 = log x ^ 3 + log 4 - log x - log 6 = log frac {4x ^ 3} {6x} = log frac { 2x ^ 2} {3}