Ответ:
Длина одной стороны
Объяснение:
Пусть длина стороны, высота (высота) и площадь равны s, h и A соответственно.
Высота треугольника увеличивается со скоростью 1,5 см / мин, а площадь треугольника увеличивается со скоростью 5 кв. См / мин. С какой скоростью изменяется основание треугольника, когда высота составляет 9 см, а площадь составляет 81 кв. См?
Это проблема, связанная с типом ставок (изменений). Интересующие переменные: a = высота, A = площадь, и, поскольку площадь треугольника A = 1 / 2ba, нам нужно b = base. Указанные скорости изменения приведены в единицах в минуту, поэтому (невидимой) независимой переменной является t = время в минутах. Нам дают: (да) / DT = 3/2 см / мин (дА) / DT = 5 см "" ^ 2 / мин. И нас просят найти (дБ) / DT, когда а = 9 см и А = 81 см «» ^ 2 A = 1 / 2ba, дифференцируя по t, получим: d / dt (A) = d / dt (1 / 2ba). Нам понадобится правило продукта справа. (dA) / dt = 1/2 (дБ) / dt a + 1 / 2b (da) / dt Нам были даны все
Длина каждой стороны равностороннего треугольника увеличена на 5 дюймов, поэтому периметр теперь составляет 60 дюймов. Как написать и решить уравнение, чтобы найти исходную длину каждой стороны равностороннего треугольника?
Я нашел: 15 "в" Давайте назовем исходные длины x: Увеличение на 5 "в" даст нам: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 перестановка: х + 5 = 60/3 х + 5 = 20 х = 20-5 х = 15 дюймов
Периметр треугольника составляет 29 мм. Длина первой стороны в два раза больше длины второй стороны. Длина третьей стороны на 5 больше длины второй стороны. Как вы находите длины сторон треугольника?
S_1 = 12 s_2 = 6 s_3 = 11 Периметр треугольника - это сумма длин всех его сторон. В этом случае считается, что периметр составляет 29 мм. Итак, для этого случая: s_1 + s_2 + s_3 = 29 Итак, решая для длины сторон, мы переводим утверждения в заданном виде в форму уравнения. «Длина 1-й стороны в два раза больше длины 2-й стороны» Чтобы решить эту проблему, мы назначаем случайную переменную либо s_1, либо s_2. Для этого примера я бы позволил x быть длиной 2-й стороны, чтобы избежать дроби в моем уравнении. Итак, мы знаем, что: s_1 = 2s_2, но так как мы позволяем s_2 быть x, мы теперь знаем, что: s_1 = 2x s_2 = x