Что такое вершина y = x ^ 2 -9 - 8x?

Что такое вершина y = x ^ 2 -9 - 8x?
Anonim

Ответ:

Вершина #(4,-25)#.

Объяснение:

Сначала поместите уравнение в стандартную форму.

# У = х ^ 2-8x-9 #

Это квадратное уравнение в стандартной форме, # Ах ^ 2 + Ьх + с #, где # a = 1, b = -8, c = -9 #.

Вершина - это максимальная или минимальная точка параболы. В этом случае, так как #a> 0 #парабола открывается вверх, а вершина является минимальной точкой.

Чтобы найти вершину параболы в стандартной форме, сначала найдите ось симметрии, которая даст нам #Икс#, Ось симметрии - это воображаемая линия, которая делит параболу на две равные половины. Как только мы имеем #Икс#мы можем подставить его в уравнение и решить для # У #, давая нам # У # значение для вершины.

Ось симметрии

#x = (- б) / (2a) #

Подставьте значения для # A # а также # Б # в уравнение.

#x = (- (- 8)) / (2 * 1) #

Упростить.

# Х = 8/2 #

# Х = 4 #

Определите значение для # У #.

Замена #4# за #Икс# в уравнение.

# У = 4 ^ 2- (8 * 4) -9 #

Упростить.

# У = 16-32-9 #

Упростить.

# У = -25 #

Вершина = # (Х, у) #=#(4,-25)#.

график {у = х ^ 2-8х-9 -10,21, 7,01, -26,63, -18,02}

Ответ:

#(4, -25)#

Объяснение:

Нам дают # У = х ^ 2-9-8x #.

Сначала я хочу привести это в стандартную форму. Это просто, нам просто нужно изменить порядок, чтобы он соответствовал # Ах ^ 2 + Ьх + с # форма.

Теперь у нас есть # Х ^ 2-8x-9 #, Самый простой способ получить стандартную форму в форме вершины - заполнить квадрат. Процесс завершения квадрата делает # x ^ 2-8x + (пусто) # идеальный квадрат. Нам просто нужно найти значение, которое дополняет это. Сначала мы берем средний срок, # -8x #и разделить его на 2 (так #-8/2#, который #-4#). Тогда мы ответим на этот вопрос, #(-4)^2#, который #16#.

Теперь мы подключаем #16# в уравнении, чтобы сделать идеальный квадрат, верно?

Хорошо, давайте посмотрим на это: # Х ^ 2-8x + 16-9 = у #, Теперь посмотри еще раз. Мы не можем просто добавить случайное число на одной стороне уравнения и не добавить его на другой стороне. То, что мы делаем с одной стороны, мы должны делать с другой. Итак, теперь у нас есть # Х ^ 2-8x + 16-9 = у + 16 #.

После того, как мы проделали всю эту работу, давайте сделаем # Х ^ 2-8x + 16 # в идеальный квадрат, который выглядит следующим образом # (Х-4) ^ 2 #, замещать # Х ^ 2-8x + 16 # с этим и у нас # (Х-4) ^ 2-9 = у + 16 #, Теперь я не знаю о вас, но мне нравилось # У # изолированные, так что давайте сделаем это в одиночку, вычитая #16# с обеих сторон.

Теперь у нас есть # (Х-4) ^ 2-9-16 = у #, который мы можем упростить до # (Х-4) ^ 2-25 = у #.

Теперь это в форме вершины, и когда у нас есть это, очень быстро найти вершину. Это вершина формы,#y = a (x - цвет (красный) (h)) ^ 2 цвет (синий) (+ k) #и вершина из этого # (цвет (красный) (h, цвет (синий) (k))) #.

В случае нашего уравнения мы имеем # У = (х-цвет (красный) (4)) ^ 2color (синий) (- 25) #, или же # (цвет (красный) (4), цвет (синий) (- 25)) #.

ПОЖАЛУЙСТА, ОБРАТИТЕ ВНИМАНИЕ тот # (цвет (красный) (ч), к) # является противоположностью того, что было в уравнении!

пример: # У = (х + 3) ^ 2 + 3 #вершина # (Цвет (красный) (-) 3,3) #.

Итак, вершина #(4, -25)#и мы можем проверить это, построив график уравнения и найдя вершину, которая является самой высокой или самой низкой точкой на параболе.

граф {х ^ 2-8x-9}

Похоже, мы правильно поняли !! Хорошая работа!