Ответ:
Объяснение:
Нам говорят, что Y изменяется прямо как кубический корень из х
таким образом
Нам также говорят, что
Следовательно:
'L изменяется совместно как a и квадратный корень из b, и L = 72, когда a = 8 и b = 9. Найти L, когда a = 1/2 и b = 36? Y изменяется совместно как куб x и квадратный корень из w, и Y = 128, когда x = 2 и w = 16. Найти Y, когда x = 1/2 и w = 64?
L = 9 "и" y = 4> ". Первоначальным утверждением является" Lpropasqrtb ", чтобы преобразовать в уравнение умножить на k константу" "вариации" rArrL = kasqrtb ", чтобы найти k, используя заданные условия" L = 72 ", когда «a = 8» и «b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3« уравнение есть »цвет (красный) (полоса (ul (| цвет (белый)) ( 2/2) цвет (черный) (L = 3asqrtb) цвет (белый) (2/2) |))) "когда" a = 1/2 "и" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 цвет (синий) "------------------
Что такое квадратный корень из 7 + квадратный корень из 7 ^ 2 + квадратный корень из 7 ^ 3 + квадратный корень из 7 ^ 4 + квадратный корень из 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Первое, что мы можем сделать, это отменить корни на корнях с четными степенями. Поскольку: sqrt (x ^ 2) = x и sqrt (x ^ 4) = x ^ 2 для любого числа, мы можем просто сказать, что sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Теперь 7 ^ 3 можно переписать как 7 ^ 2 * 7, и что 7 ^ 2 может выйти из корня! То же самое относится к 7 ^ 5, но переписывается как 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Теперь м
Y изменяется непосредственно с x, y = 65, когда x = 5. Как вы находите у, когда х = 12?
156 y изменяется непосредственно в зависимости от xy xy = kx color (white) (...) ["где" k = "константа пропорциональности"] Когда y = 65, x = 5 65 = k × 5 k = 65/5 = цвет (синий) (13) При x = 12 y = kx = цвет (синий) (13) × 12 = 156