Ответ:
я нашел
Объяснение:
Назовите ваши целые числа:
а также
у тебя есть:
перестановки:
Таким образом, целые числа должны быть:
Ответ:
Целые числа
Объяснение:
Если большее последовательное четное целое число
тогда меньшее последовательное четное целое число
Нам сказано
Произведение двух последовательных четных целых чисел равно 24. Найдите два целых числа. Ответ в виде парных точек с наименьшим из двух целых чисел первым. Ответ?
Два последовательных четных целых числа: (4,6) или (-6, -4) Позвольте, color (red) (n и n-2 быть двумя последовательными четными целыми числами, где color (красный) (n inZZ Произведение n и n-2 равно 24, т.е. n (n-2) = 24 => n ^ 2-2n-24 = 0 Теперь [(-6) + 4 = -2 и (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 или n + 4 = 0 ... to [n inZZ] => цвет (красный) (n = 6 или n = -4 (i) цвет (красный) (n = 6) => цвет (красный) (n-2) = 6-2 = цвет (красный) (4) Итак, два последовательных четных целых числа: (4,6) (ii)) цвет (красный) (n = -4) => цвет (красный) (n-2) = -4-2 = ц
Какие три последовательных нечетных целых числа таковы, что сумма среднего и наибольшего целого числа 21 больше наименьшего целого числа?
Три последовательных нечетных целых числа - это 15, 17 и 19. Для задач с «последовательными четными (или нечетными) цифрами» стоит дополнительных усилий для точного описания «последовательных» цифр. 2x - это определение четного числа (число, делимое на 2). Это означает, что (2x + 1) - это определение нечетного числа. Итак, вот «три последовательных нечетных числа», написанных так, что это намного лучше, чем x, y, z или x, x + 2, x + 4 2x + 1larr наименьшее целое число (первое нечетное число) 2x + 3larr среднее целое число ( второе нечетное число) 2x + 5 большое наибольшее целое число (третье н
"Лена имеет 2 целых числа подряд.Она замечает, что их сумма равна разнице между их квадратами. Лена выбирает еще 2 последовательных целых числа и замечает то же самое. Докажите алгебраически, что это верно для любых двух последовательных целых чисел?
Пожалуйста, обратитесь к объяснению. Напомним, что последовательные целые числа отличаются на 1. Следовательно, если m одно целое число, то последующее целое число должно быть n + 1. Сумма этих двух целых чисел равна n + (n + 1) = 2n + 1. Разница между их квадратами составляет (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, по желанию! Почувствуй радость математики!