Ответ:
Объяснение:
Позволять
Принимая,
решение для
Как доказать (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Пожалуйста, смотрите ниже. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Может ли кто-нибудь помочь подтвердить эту личность? (SiNx + cosx) ^ 2 / грех ^ 2x-сов ^ 2x = зш ^ 2x-сов ^ 2x / (SiNx-cosx) ^ 2
Это подтверждается ниже: (sinx + cosx) ^ 2 / (sin ^ 2x-cos ^ 2x) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => (отмена ((sinx + cosx) ) (sinx + cosx)) / (отмена ((sinx + cosx)) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => ((sinx + cosx) ( sinx-cosx)) / ((sinx-cosx) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => цвет (зеленый) ((sin ^ 2x-cos ^ 2x) / (SiNx-cosx) ^ 2) = (син ^ 2x-сов ^ 2x) / (SiNx-cosx) ^ 2
Докажите это: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Доказательство ниже с использованием сопряженных и тригонометрической версии теоремы Пифагора. Часть 1 sqrt ((1-cosx) / (1 + cosx)) цвет (белый) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) цвет (белый) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) цвет (белый) («XXX») = (1-cosx) / sqrt (1-cos ^ 2x) Часть 2 Аналогично sqrt ((1 + cosx) / (1-cosx) цвет (белый) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) Часть 3: Объединение терминов sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) цвет (белый) («XXX») = (1-cosx) / sqrt (1-cos ^ 2x) + (1 + co