Ответ:
Я не уверен, что мое расширение удовлетворит вас полностью, но …
Объяснение:
Представьте, что вы решили, что:
так что в основном у вас есть перестановка
но также
Надеюсь, это не смущает!
Число прошедшего года делится на 2, а результат переворачивается с ног на голову и делится на 3, затем на левую правую сторону вверх и делится на 2. Затем цифры в результате меняются местами на 13. Что такое прошедший год?
Color (red) (1962) Вот описанные шаги: {: ("year", color (white) ("xxx"), rarr ["result" 0]), (["result" 0] div 2 ,, rarr ["result" 1]), (["result" 1] "перевернулся" ,, rarr ["result" 2]), (["result" 2] ", разделенный на" 3,, rarr ["result "3]), ((" влево-вправо вверх ") ,, (" без изменений ")), ([" result "3] div 2,, rarr [" result "4]), ([" result " 4] "цифры перевернутые" ,, rarr ["result" 5] = 13):} Работа в обратном направлении: цвет (белый)
Если ответ представлен, если ответ был обновлен другим пользователем, означает ли это, что выбранный ответ зачисляется на всех участников?
Да, это так. Потому что они обновили проблему, сделав так, чтобы оба автора получили кредит. Надеюсь, это помогло!
Когда многочлен делится на (x + 2), остаток равен -19. Когда тот же самый многочлен делится на (x-1), остаток равен 2, как определить остаток, когда многочлен делится на (x + 2) (x-1)?
Мы знаем, что f (1) = 2 и f (-2) = - 19 из теоремы остатка. Теперь найдите остаток от многочлена f (x) при делении на (x-1) (x + 2). Остаток будет форма Ax + B, потому что это остаток после деления на квадрат. Теперь мы можем умножить делитель на коэффициент Q ... f (x) = Q (x-1) (x + 2) + Ax + B. Далее, вставьте 1 и -2 для x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Решая эти два уравнения, мы получаем A = 7 и B = -5 Остаток = Ax + B = 7x-5