Ответ:
Или же
Объяснение:
Сначала мы найдем наклон перпендикулярной линии. Наклон можно узнать по формуле:
куда
Подстановка двух пунктов из задачи дает:
Перпендикулярная линия будет иметь наклон (назовем это
Подставляя т
Теперь, когда у нас есть наклон перпендикулярной линии и одна точка, мы можем использовать формулу для наклона точки, чтобы найти уравнение. Формула точка-наклон гласит:
куда
Подставляя вычисленный нами перпендикулярный уклон и используя точку из задачи, получаем:
Или, если мы решим для
Уравнение прямой: 2x + 3y - 7 = 0, найдите: - (1) наклон прямой (2) уравнение прямой, перпендикулярной данной прямой и проходящей через пересечение линии x-y + 2 = 0 и 3x + y-10 = 0?
-3x + 2y-2 = 0 color (white) ("ddd") -> color (white) ("ddd") y = 3 / 2x + 1 Первая часть во многих деталях демонстрирует, как работают первые принципы. Привыкнув к ним и используя ярлыки, вы будете использовать намного меньше строк. цвет (синий) («Определить пересечение исходных уравнений») x-y + 2 = 0 "" ....... Уравнение (1) 3x + y-10 = 0 "" .... Equation ( 2) Вычтите x с обеих сторон уравнения (1), давая -y + 2 = -x Умножьте обе стороны на (-1) + y-2 = + x "" .......... Уравнение (1_a ) Использование уравнения (1_a) вместо x в уравнении (2) color (green) (3
Каково уравнение прямой, проходящей через начало координат и перпендикулярной линии, проходящей через следующие точки: (3,7), (5,8)?
Y = -2x Прежде всего нам нужно найти градиент линии, проходящей через (3,7) и (5,8) «градиент» = (8-7) / (5-3) «градиент» = 1 / 2 Теперь, поскольку новая линия перпендикулярна линии, проходящей через 2 точки, мы можем использовать это уравнение m_1m_2 = -1, где градиенты двух разных линий при умножении должны равняться -1, если линии перпендикулярны друг другу, т.е. под прямым углом. следовательно, ваша новая линия будет иметь градиент 1 / 2m_2 = -1 m_2 = -2 Теперь мы можем использовать формулу градиента точки, чтобы найти уравнение линии y-0 = -2 (x-0) y = - 2x
Каково уравнение прямой, проходящей через начало координат и перпендикулярной линии, проходящей через следующие точки: (9,4), (3,8)?
См. ниже Наклон линии, проходящей через (9,4) и (3,8) = (4-8) / (9-3) -2/3, поэтому любая линия перпендикулярна линии, проходящей через (9,4) ) и (3,8) будет иметь наклон (m) = 3/2. Следовательно, мы должны выяснить уравнение линии, проходящей через (0,0) и имеющей наклон = 3/2, требуемое уравнение (y-0 ) = 3/2 (x-0) ie2y-3x = 0