Ответ:
# (6-я) / (37) #
Объяснение:
# 6 + I #
обратная:
# 1 / (6 + I) #
Затем вы должны умножить на комплексное сопряжение, чтобы получить мнимые числа из знаменателя:
комплексное сопряжение # 6 + I # со знаком изменившимся над собой:
# (6-я) / (6-я) #
# 1 / (6 + I) * (6-я) / (6-я) #
# (6i) / # (36 + 6i-6i-я ^ 2)
# (6-я) / (36- (SQRT (-1)) 2 ^) #
# (6-я) / (36 - (- 1)) #
# (6-я) / (37) #
Взаимное из # A # является # 1 / а #следовательно, взаимное # 6 + I # является:
# 1 / (6 + I) #
Однако оставлять комплексное число в знаменателе плохой практикой.
Чтобы комплексное число стало действительным, мы умножаем на 1 в форме # (6-я) / (6-я) #.
# 1 / (6 + I) (6-я) / (6-я) #
Обратите внимание, что мы ничего не сделали для изменения значения, потому что мы умножаем на форму, равную 1.
Вы можете спросить себя; «Почему я выбрал # 6-я #?'.
Ответ в том, что я знаю, когда я умножаю # (А + би) (а-би) #Я получаю действительное число, равное # А ^ 2 + B ^ 2 #.
В этом случае #a = 6 # а также # Б = 1 #, следовательно, #6^2+1^2 = 37#:
# (6-я) / 37 #
Также, # А + би # а также # А-би # имеют специальные имена, которые называются комплексными конъюгатами.