Два угла треугольника имеют углы (2 пи) / 3 и (пи) / 6. Если одна сторона треугольника имеет длину 8, какой самый длинный периметр треугольника?

Два угла треугольника имеют углы (2 пи) / 3 и (пи) / 6. Если одна сторона треугольника имеет длину 8, какой самый длинный периметр треугольника?
Anonim

Ответ:

Самый длинный периметр #P ~~ 29.856 #

Объяснение:

Позволять #angle A = pi / 6 #

Позволять #angle B = (2pi) / 3 #

затем #angle C = pi - A - B #

#C = pi - pi / 6 - (2pi) / 3 #

#C = pi - pi / 6 - (2pi) / 3 #

#C = pi / 6 #

Поскольку треугольник имеет два равных угла, это равнобедренный. Свяжите данную длину 8 с наименьшим углом. По совпадению, это как сторона "а", так и сторона "с". потому что это даст нам самый длинный периметр.

#a = c = 8 #

Используйте закон косинусов, чтобы найти длину стороны "b":

#b = sqrt (a ^ 2 + c ^ 2 - 2 (a) (c) cos (B)) #

#b = 8sqrt (2 (1 - cos (B))) #

#b = 8sqrt (2 (1 - cos ((2pi) / 3))) #

#b = 8sqrt (3) #

Периметр:

#P = a + b + c #

#P = 8 + 8sqrt (3) + 8 #

#P ~~ 29.856 #