Ответ:
Объяснение:
Уравнение прямой в
#color (blue) "форма с уклоном" # является.
#color (красный) (бар (уль (| цвет (белый) (2/2) цвет (черный) (у-y_1 = т (х-x_1)) цвет (белый) (2/2) |))) # где m представляет наклон и
# (x_1, y_1) "точка на линии" # Чтобы вычислить m, используйте
#color (blue) "Формула градиента" #
#color (красный) (бар (ули (| цвет (белый) (2/2) цвета (черный) (т = (y_2-y_1) / (x_2-x_1)) цвет (белый) (2/2) |))) # где
# (x_1, y_1), (x_2, y_2) "2 точки координат" # Здесь 2 пункта (-2, -1) и (1, 5)
позволять
# (x_1, y_1) = (- 2, -1) "и" (x_2, y_2) = (1,5) #
# RArrm = (5 - (- 1)) / (1 - (- 2)) = 6/3 = 2 # Любой из 2 пунктов может быть использован для
# (x_1, y_1) # в уравнении, так как обе точки находятся на прямой.
# "Использование" m = 2 "и" (x_1, y_1) = (1,5) # Подставьте эти значения в уравнение.
# rArry-5 = 2 (x-1) larrcolor (красный) "в форме уклона" # Распределение и упрощение дает альтернативную версию уравнения.
# У-5 = 2x-2rArry = 2x-2 + 5 #
# rArry = 2x + 3larrcolor (red) "в форме пересечения по склону" #
Каково уравнение для линии, которая проходит через точку (3,4), и которая параллельна линии с уравнением y + 4 = -1 / 2 (x + 1)?
Уравнение линии y-4 = -1/2 (x-3) [Наклон линии y + 4 = -1 / 2 (x + 1) или y = -1 / 2x -9/2 получается путем сравнения общего уравнения прямой y = mx + c как m = -1 / 2. Наклон параллальных линий одинаков. Уравнение линии, проходящей через (3,4): y-y_1 = m (x-x_1) ory-4 = -1/2 (x-3) [Ans]
Каково уравнение линии, которая проходит через (0, -1) и перпендикулярна линии, которая проходит через следующие точки: (8, -3), (1,0)?
7x-3y + 1 = 0 Наклон линии, соединяющей две точки (x_1, y_1) и (x_2, y_2), определяется как (y_2-y_1) / (x_2-x_1) или (y_1-y_2) / (x_1-x_2) ) Поскольку точки (8, -3) и (1, 0), наклон соединяющей их линии будет определяться как (0 - (- 3)) / (1-8) или (3) / (- 7) т.е. -3/7. Произведение наклона двух перпендикулярных линий всегда равно -1. Следовательно, наклон линии, перпендикулярной к нему, будет 7/3, и, следовательно, уравнение в форме наклона можно записать как y = 7 / 3x + c. Поскольку это проходит через точку (0, -1), помещая эти значения в вышеприведенное уравнение, мы получаем -1 = 7/3 * 0 + c или c = 1 Следовательно
Каково уравнение линии, которая проходит через (0, -1) и перпендикулярна линии, которая проходит через следующие точки: (13,20), (16,1)?
Y = 3/19 * x-1 Наклон линии проходит через (13,20) и (16,1) m_1 = (1-20) / (16-13) = - 19/3 Мы знаем условие перпендикулярность между двумя линиями является произведением их наклонов, равным -1: .m_1 * m_2 = -1 или (-19/3) * m_2 = -1 или m_2 = 3/19. Таким образом, линия проходит через (0, -1 ) это y + 1 = 3/19 * (x-0) или y = 3/19 * x-1 график {3/19 * x-1 [-10, 10, -5, 5]} [Ответ]