Ответ:
Объяснение:
чтобы найти первую производную, мы должны просто использовать три правила:
1. Правило власти
2. Постоянное правило
3. Правило сумм и разностей
первая производная результаты в:
что упрощает
найти вторая производнаямы должны вывести первую производную, снова применив правило степени, которое приводит к:
Вы можете продолжать идти, если хотите:
третья производная =
четвертая производная =
пятая производная =
шестая производная =
Монина подбрасывает три монеты. Какова вероятность того, что первая, вторая и третья монеты будут все приземляться одинаково (все головы или все хвосты)?
Посмотрите процесс решения ниже: первая подброшенная монета имеет шанс 1 в 1 или 1/1 быть головой или хвостом (при условии, что монета не может приземлиться на своем краю). Вторая монета имеет шанс 1 к 2 или 1/2 совпадения с монетой на первом броске. Третья монета также имеет шанс 1 в 2 или 1/2 совпадения с монетой при первом броске. Поэтому вероятность бросить три монеты и получить все головы или все хвосты: 1 xx 1/2 xx 1/2 = 1/4 = 0,25 или 25%. Мы также можем показать это из таблицы результатов ниже: Есть 8 возможных результатов за подбрасывание трех монет. Два из этих результатов - либо все головы, либо все хвосты, поэт
Какова первая производная и вторая производная 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(первая производная)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(вторая производная)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(первая производная)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 года) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 года) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- х ^ -1 + 1) "(вторая производная)"
Что такое вторая производная от х / (х-1) и первая производная от 2 / х?
Вопрос 1 Если f (x) = (g (x)) / (h (x)), то по правилу отношения f '(x) = (g' (x) * h (x) - g (x) * h '(x)) / ((g (x)) ^ 2) Итак, если f (x) = x / (x-1), то первая производная f' (x) = ((1) (x-1) - (x) (1)) / x ^ 2 = - 1 / x ^ 2 = - x ^ (- 2) и вторая производная f '' (x) = 2x ^ -3 Вопрос 2 Если f (x) = 2 / x это может быть переписано как f (x) = 2x ^ -1 и с использованием стандартных процедур для получения производной f '(x) = -2x ^ -2 или, если вы предпочитаете f' (x) = - 2 / х ^ 2