Ответ:
Там возможная третья сторона вокруг
Если длина стороны
Объяснение:
Возможно, это более сложная проблема, чем кажется на первый взгляд. Кто-нибудь знает, как найти третью сторону, которая нам, похоже, нужна для этой проблемы? Обычный триггер обычно заставляет нас вычислять углы, делая приближение, где ни один не требуется.
На самом деле этому не учат в школе, но самый простой способ - теорема Архимеда, современная форма теоремы Герона. Давайте назовем область А
У нас есть
Это два разных значения для
Для максимальной площади максимальное масштабирование означает, что наименьшая сторона масштабируется до
Для минимальной площади самые большие боковые шкалы
Треугольник А имеет площадь 12 и две стороны длиной 5 и 7. Треугольник B похож на треугольник A и имеет сторону длиной 19. Каковы максимальные и минимально возможные площади треугольника B?
Максимальная площадь = 187,947 "" квадратных единиц Минимальная площадь = 88,4082 "" квадратных единиц Треугольники A и B похожи. По пропорциональному и пропорциональному методу решения треугольник B имеет три возможных треугольника. Для треугольника A: стороны x = 7, y = 5, z = 4.800941906394, угол Z = 43.29180759327 ^ @ Угол Z между сторонами x и y был получен с использованием формулы для площади треугольника Area = 1/2 * x * y * sin Z 12 = 1/2 * 7 * 5 * sin ZZ = 43.29180759327 ^ @ Три возможных треугольника для треугольника B: стороны - треугольник 1. x_1 = 19, y_1 = 95/7, z_1 = 13.031128031641, угол
Треугольник А имеет площадь 12 и две стороны длиной 6 и 9. Треугольник B похож на треугольник A и имеет сторону длиной 15. Каковы максимальные и минимально возможные площади треугольника B?
Дельта А и В похожи. Чтобы получить максимальную площадь дельты В, сторона 15 дельты В должна соответствовать стороне 6 дельты А. Стороны находятся в соотношении 15: 6 Следовательно, площади будут в соотношении 15 ^ 2: 6 ^ 2 = 225: 36 Максимальная площадь треугольника B = (12 * 225) / 36 = 75 Аналогично, чтобы получить минимальную площадь, сторона 9 дельты A будет соответствовать стороне 15 дельты B. Стороны находятся в соотношении 15: 9, а области 225: 81. Минимальная площадь дельты B = (12 * 225) / 81 = 33,3333
Треугольник А имеет площадь 12 и две стороны длиной 7 и 7. Треугольник B похож на треугольник A и имеет сторону длиной 19. Каковы максимальные и минимально возможные площади треугольника B?
Площадь треугольника B = 88.4082 Поскольку треугольник A является равнобедренным, треугольник B также будет равнобедренным.Стороны треугольников B & A находятся в соотношении 19: 7. Области будут в соотношении 19 ^ 2: 7 ^ 2 = 361: 49:. Площадь треугольника B = (12 * 361) / 49 = 88,4082