Точечно-наклонная форма имеет вид:
где
Таким образом, в рассматриваемом примере мы можем написать уравнение как:
Форма уклона-перехвата:
где
В этой форме уравнение нашей линии:
Что представляет собой уравнение в стандартной форме линии, которая проходит через точку (-4, 2) и имеет наклон 9/2?
С наклоном 9/2 линия имеет вид y = 9 / 2x + c, чтобы определить, что такое c, и положить значения (-4,2) в уравнение 2 = 9/2 xx-4 + c 2 = -18 + c 20 = c, так что линия y = 9 / 2x + 20
Что представляет собой уравнение в стандартной форме параболы с фокусом в (11, -5) и директрисой y = -19?
Y = 1 / 28x ^ 2-11 / 14x-215/28> "для любой точки" (x, y) "на параболе" "фокус и директриса равноудалены" цвет (синий) "с использованием формулы расстояния" sqrt ((х-11) ^ 2 + (у + 5) ^ 2) = | у + 19 | цвет (синий) "квадрат обеих сторон" (x-11) ^ 2 + (y + 5) ^ 2 = (y + 19) ^ 2 rArrx ^ 2-22x + 121cancel (+ y ^ 2) + 10y + 25 = отмена (y ^ 2) + 38y + 361 rArr-28y = -x ^ 2 + 22x + 215 rArry = 1 / 28x ^ 2-11 / 14x-215/28
Какое утверждение лучше всего описывает уравнение (x + 5) 2 + 4 (x + 5) + 12 = 0? Уравнение является квадратичным по форме, потому что оно может быть переписано как квадратное уравнение с подстановкой u u = (x + 5). Уравнение является квадратичным по форме, потому что, когда оно расширяется,
Как объясняется ниже, u-замещение будет описывать его как квадратичное по u. Для квадратичного по x его разложение будет иметь наибольшую степень x как 2, лучше всего будет описывать его как квадратичное по x.