Какова стандартная форма y = (4x-15) (2x-2) - (3x-1) ^ 2?

Какова стандартная форма y = (4x-15) (2x-2) - (3x-1) ^ 2?
Anonim

Ответ:

#y = -x ^ 2 - 32x + 29 #

Вот как я это сделал:

Объяснение:

Стандартная форма означает, что мы должны поместить уравнение в эту форму: #y = топор ^ 2 + bx + c #.

#y = (4x-15) (2x-2) - (3x-1) ^ 2 #

Первое, что нам нужно сделать, это распространить и развернуть:

# 4x * 2x = 8x ^ 2 #

# 4x * -2 = -8x #

# -15 * 2x = -30x #

#-15 * -2 = 30#

Когда мы объединяем все это вместе, мы получаем:

# 8x ^ 2 - 8x - 30x + 30 #

Мы все еще можем объединить как термины, делая # -8x - 30x #:

# 8x ^ 2 - 38x + 30 #

#-------------------#

Теперь давайте посмотрим на # (3x-1) ^ 2 # и расширить:

# (3x-1) (3x-1) #

# 3x * 3x = 9x ^ 2 #

# 3x * -1 = -3x #

# -1 * 3x = -3x #

#-1 * -1 = 1#

Когда мы объединяем все это вместе, мы получаем:

# 9x ^ 2 - 3x - 3x + 1 #

Затем мы объединяем как термины, делая # -3x-3x #:

# 9x ^ 2 - 6x + 1 #

#------------------#

Итак, уравнение теперь:

#y = 8x ^ 2 - 38x + 30 - (9x ^ 2 - 6x + 1) #

Раздадим отрицательный знак:

#y = 8x ^ 2 - 38x + 30 - 9x ^ 2 + 6x - 1 #

Наконец, давайте снова объединим похожие термины:

#y = цвет (красный) (8x ^ 2) четырехцветный (пурпурный) (- quad38x) + цвет (синий) 30 четырехцветный (красный) (- quad9x ^ 2) + цвет (пурпурный) (6x) четырехцветный (синий) (- QUAD1) #

Итак, окончательный ответ в стандартной форме:

#y = -x ^ 2 - 32x + 29 #

как это соответствует #y = топор ^ 2 + bx + c #.

Надеюсь это поможет!