Ответ:
Точечно-наклонная форма:
или же
форма наклона:
стандартная форма:
Объяснение:
Способ 1:
Используйте форму наклона точки
который
когда дается точка
'
В этом случае мы должны сначала найти наклон между двумя заданными точками.
Это дается уравнением:
когда дают очки
'
За
Подставляя то, что мы знаем, в уравнение наклона, мы можем получить:
'
отсюда мы можем подключить любую точку и получить:
или же
Способ 2:
Используйте форму пересечения склона
который
когда
'
Мы можем найти наклон между двумя заданными точками, используя те же шаги, что и выше
и получить
'
но на этот раз, когда мы подключим, мы все равно будем пропускать
чтобы найти y-перехват, нам нужно временно подключить одну из заданных точек для
'
так
если мы подключим
мы бы получили:
'
решение для
'
так что ваше уравнение будет
другая форма, в которой ваше уравнение может быть, может быть стандартной формой, где только переменные находятся на одной стороне
'
Вы можете получить уравнение в этой форме, умножив обе стороны уравнения пересечения наклона на 13
получить
затем вычесть
'
так что ваше стандартное уравнение формы будет
Каково уравнение прямой, проходящей через начало координат и перпендикулярной линии, проходящей через следующие точки: (3,7), (5,8)?
Y = -2x Прежде всего нам нужно найти градиент линии, проходящей через (3,7) и (5,8) «градиент» = (8-7) / (5-3) «градиент» = 1 / 2 Теперь, поскольку новая линия перпендикулярна линии, проходящей через 2 точки, мы можем использовать это уравнение m_1m_2 = -1, где градиенты двух разных линий при умножении должны равняться -1, если линии перпендикулярны друг другу, т.е. под прямым углом. следовательно, ваша новая линия будет иметь градиент 1 / 2m_2 = -1 m_2 = -2 Теперь мы можем использовать формулу градиента точки, чтобы найти уравнение линии y-0 = -2 (x-0) y = - 2x
Каково уравнение прямой, проходящей через начало координат и перпендикулярной линии, проходящей через следующие точки: (9,4), (3,8)?
См. ниже Наклон линии, проходящей через (9,4) и (3,8) = (4-8) / (9-3) -2/3, поэтому любая линия перпендикулярна линии, проходящей через (9,4) ) и (3,8) будет иметь наклон (m) = 3/2. Следовательно, мы должны выяснить уравнение линии, проходящей через (0,0) и имеющей наклон = 3/2, требуемое уравнение (y-0 ) = 3/2 (x-0) ie2y-3x = 0
Каково уравнение линии, проходящей через начало координат и перпендикулярной линии, проходящей через следующие точки: (9,2), (- 2,8)?
6y = 11x Линия через (9,2) и (-2,8) имеет наклон цвета (белый) ("XXX") m_1 = (8-2) / (- 2-9) = - 6/11 Все линии, перпендикулярные этому, будут иметь цветовой наклон (белый) ("XXX") m_2 = -1 / m_1 = 11/6. Используя форму точки наклона, линия через начало координат с этим перпендикулярным наклоном будет иметь уравнение: цвет (белый) ("XXX") (y-0) / (x-0) = 11/6 или цвет (белый) ("XXX") 6y = 11x