Ответ:
Объяснение:
Позволять
Следующее четное число, очевидно,
Третий
Так,
Из этого уравнения мы выводим:
из чего следует:
Сумма трех последовательных четных целых чисел равна 240. Что такое целые числа?
1-е число = 78 2-е число = 80 3-е число = 82 Пусть первым четным целым числом будет n (n + 4) "" = "" 3n + 6 "" = "" 240 Вычтите 6 с обеих сторон 3n = 240-6 Разделите обе стороны на 3 n = (240-6) / 3 = 78 1-е число = 78 2-е число = 80 3-е число = 82 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Если вы так выбрали Вы можете использовать альтернативу: пусть n будет средним числом, дающим: (n-2) + n + (n + 2) = 240 среднего числа -> n = 240/3 = 80
Три последовательных целых числа могут быть представлены n, n + 1 и n + 2. Если сумма трех последовательных целых чисел равна 57, каковы целые числа?
18,19,20 Сумма - это сложение числа, поэтому сумму n, n + 1 и n + 2 можно представить в виде n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18, поэтому наше первое целое число равно 18 (n), наше второе - 19 (18 + 1), а третье - 20 (18 + 2).
Зная формулу для суммы N целых чисел a) что такое сумма первых N последовательных квадратных целых чисел, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? б) Сумма первых N последовательных кубических целых чисел Sigma_ (k = 1) ^ N k ^ 3?
Для S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Имеется sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3 сумма_ {i = 0} ^ ni ^ 2 + 3 сумма_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3 сумма_ {i = 0} ^ ni ^ 2 + 3 сумма_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 решения для sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni, но sum_ {i = 0} ^ ni = ((n + 1) n) / 2, поэтому sum_ {i = 0} ^ ni ^ 2 = (n