Ответ:
5 ед. Это очень известный треугольник.
Объяснение:
Если
Тогда, поскольку длина стороны положительна:
Путин
Тот факт, что треугольник со сторонами 3, 4 и 5 единиц является прямоугольным, был известен еще с древних египтян. Это Египетский треугольникСчитается, что древние египтяне использовали его для построения прямых углов - например, в пирамидах (http://nrich.maths.org/982).
Длина гипотенузы в прямоугольном треугольнике составляет 20 сантиметров. Если длина одной ноги составляет 16 сантиметров, какова длина другой ноги?
"12 см" из "теоремы Пифагора" "h" ^ 2 = "a" ^ 2 + "b" ^ 2 где "h =" длина стороны гипотенузы "a =" длина одной ноги "b =" длина другой " нога ("20 см") ^ 2 = ("16 см") ^ 2 + "b" ^ 2 "b" ^ 2 = ("20 см") ^ 2 - ("16 см") ^ 2 "b" = sqrt (("20 см") ^ 2 - ("16 см") ^ 2) "b" = sqrt ("400 см" ^ 2 - "256 см" ^ 2) "b" = sqrt ("144 см "^ 2)" b = 12 см "
Используя теорему Пифагора, как определить длину ноги прямоугольного треугольника, если длина другой ноги составляет 8 футов, а длина гипотенузы - 10 футов?
Другая нога 6 футов в длину. Теорема Пифагора говорит о том, что в прямоугольном треугольнике сумма квадратов двух перпендикулярных линий равна квадрату гипотенузы. В данной задаче одна нога прямоугольного треугольника имеет длину 8 футов, а гипотенуза - 10 футов. Пусть другая нога будет х, тогда по теореме х ^ 2 + 8 ^ 2 = 10 ^ 2 или х ^ 2 + 64 = 100 или х ^ 2 = 100-64 = 36, т. Е. Х = + - 6, но как - 6 не допускается, x = 6, т.е. другая нога имеет длину 6 футов.
Используя теорему Пифагора, как определить длину ноги прямоугольного треугольника, если длина другой ноги составляет 7 футов, а длина гипотенузы - 10 футов?
Смотрите весь процесс решения ниже: Теорема Пифагора гласит: a ^ 2 + b ^ 2 = c ^ 2, где a и b - ноги прямоугольного треугольника, а c - гипотенуза. Подстановка значений для задачи для одной из ног и гипотенузы и решение для другой ноги дает: a ^ 2 + 7 ^ 2 = 10 ^ 2 a ^ 2 + 49 = 100 a ^ 2 + 49 - цвет (красный ) (49) = 100 - цвет (красный) (49) a ^ 2 = 51 sqrt (a ^ 2) = sqrt (51) a = sqrt (51) = 7,14 с округлением до ближайшей сотой.