Что такое уравнение в стандартной форме параболы с фокусом в (-1,18) и директрисой у = 19?

Что такое уравнение в стандартной форме параболы с фокусом в (-1,18) и директрисой у = 19?
Anonim

Ответ:

# У = -1 / 2x ^ 2x #

Объяснение:

Парабола является местом точки, скажем, # (Х, у) #, который перемещается так, что его расстояние от заданной точки называется фокус и из заданной строки под названием директриса всегда равен.

Кроме того, стандартная форма уравнения параболы # У = ах ^ 2 + Ьх + с #

Как фокус #(-1,18)#, расстояние # (Х, у) # от этого #sqrt ((х + 1) ^ 2 + (у-18) 2 ^) #

и расстояние # (Х, у) # от директора # У = 19 # является # (У-19) #

Следовательно, уравнение параболы

# (Х + 1) ^ 2 + (у-18) ^ 2 = (у-19) ^ 2 #

или же # (Х + 1) ^ 2 = (у-19) ^ 2- (у-18) ^ 2 = (у-19-у + 18) (у-19 + у-18) #

или же # Х ^ 2 + 2x + 1 = -1 (2y-1) = - 2y + 1 #

или же # 2y = -x ^ 2-2x #

или же # У = -1 / 2x ^ 2x #

graph {(2y + x ^ 2 + 2x) (y-19) = 0 -20, 20, -40, 40}