Ответ:
Объяснение:
Итак, мы знаем, что:
Теперь мы используем замену, чтобы найти 10-й член:
Помещение в 2 дает нам:
20-й член арифметического ряда - это log20, а 32-й член - это log32. Ровно один член в последовательности является рациональным числом. Какое рациональное число?
Десятый член - это log10, что равно 1. Если 20-й член - это log 20, а 32-й член - это log32, то из этого следует, что десятый член - это log10. Log10 = 1. 1 - рациональное число. Когда журнал записывается без «основания» (индекс после журнала), подразумевается основание 10. Это известно как «общий журнал». База 10 из 10 равна 1, потому что 10 для первой степени равен единице. Помните, что «ответ на журнал - это показатель степени». Рациональное число - это число, которое может быть выражено как отношение или дробь. Обратите внимание на слово RATIO в RATIOnal. Можно выразить как 1/1. Я не знаю,
Первые три члена из 4 целых чисел находятся в арифметической P., а последние три члена - в Geometric.P. Как найти эти 4 числа? Дано (1-й + последний член = 37) и (сумма двух целых чисел в середине равна 36)
«Требуемое число:» 12, 16, 20, 25. Назовем термины t_1, t_2, t_3 и t_4, где t_i в ZZ, i = 1-4. Учитывая, что члены t_2, t_3, t_4 образуют GP, мы принимаем, t_2 = a / r, t_3 = a и t_4 = ar, где ane0. Также учитывая, что t_1, t_2 и, t_3 в AP мы имеем 2t_2 = t_1 + t_3 rArr t_1 = 2t_2-t_3 = (2a) / ra. Таким образом, в целом мы имеем, Seq., T_1 = (2a) / r-a, t_2 = a / r, t_3 = a и, t_4 = ar. По тому, что дано, t_2 + t_3 = 36rArra / r + a = 36, т. Е. A (1 + r) = 36r ....................... .................................... (ast_1). Далее, t_1 + t_4 = 37, ....... "[Дано]" rArr (2a) / r-a + ar = 37, т. Е. A
Четвертый член AP равен трем разам, когда его седьмой член в два раза превышает третий член на 1. Найти первый член и общую разницу?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d Подставляя значения в уравнение (1), a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) Подставляя значения в уравнение (2), a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 -a -d = 1 a + d = -1. ........... (4) При одновременном решении уравнений (3) и (4) получаем d = 2/13 a = -15/13