Ответ:
Объяснение:
# "уравнение прямой, параллельной оси x, то есть" #
# "горизонтальная линия есть" #
#color (красный) (бар (ули (| цвет (белый) (2/2) цвета (черный) (у = с) цвета (белого) (2/2) |))) #
# "где c - это значение y-координаты этой строки" #
#"проходит через"#
# "для точки" (1,2) rArrc = 2 #
# "уравнение горизонтальной линии" y = 2 # график {(y-0,001x-2) = 0 -10, 10, -5, 5}
Каково уравнение линии, которая проходит через (0, -1) и перпендикулярна линии, которая проходит через следующие точки: (8, -3), (1,0)?
7x-3y + 1 = 0 Наклон линии, соединяющей две точки (x_1, y_1) и (x_2, y_2), определяется как (y_2-y_1) / (x_2-x_1) или (y_1-y_2) / (x_1-x_2) ) Поскольку точки (8, -3) и (1, 0), наклон соединяющей их линии будет определяться как (0 - (- 3)) / (1-8) или (3) / (- 7) т.е. -3/7. Произведение наклона двух перпендикулярных линий всегда равно -1. Следовательно, наклон линии, перпендикулярной к нему, будет 7/3, и, следовательно, уравнение в форме наклона можно записать как y = 7 / 3x + c. Поскольку это проходит через точку (0, -1), помещая эти значения в вышеприведенное уравнение, мы получаем -1 = 7/3 * 0 + c или c = 1 Следовательно
Каково уравнение линии, которая проходит через (0, -1) и перпендикулярна линии, которая проходит через следующие точки: (13,20), (16,1)?
Y = 3/19 * x-1 Наклон линии проходит через (13,20) и (16,1) m_1 = (1-20) / (16-13) = - 19/3 Мы знаем условие перпендикулярность между двумя линиями является произведением их наклонов, равным -1: .m_1 * m_2 = -1 или (-19/3) * m_2 = -1 или m_2 = 3/19. Таким образом, линия проходит через (0, -1 ) это y + 1 = 3/19 * (x-0) или y = 3/19 * x-1 график {3/19 * x-1 [-10, 10, -5, 5]} [Ответ]
Какое утверждение лучше всего описывает уравнение (x + 5) 2 + 4 (x + 5) + 12 = 0? Уравнение является квадратичным по форме, потому что оно может быть переписано как квадратное уравнение с подстановкой u u = (x + 5). Уравнение является квадратичным по форме, потому что, когда оно расширяется,
Как объясняется ниже, u-замещение будет описывать его как квадратичное по u. Для квадратичного по x его разложение будет иметь наибольшую степень x как 2, лучше всего будет описывать его как квадратичное по x.