Ответ:
уклон (м) =
# -1/5 #
Объяснение:
Чтобы рассчитать наклон линии, проходящей через 2 точки:
Используйте формулу градиента:
# m = (y_2 - y_1) / (x_2 - x_1) # в этом вопросе давай
# (x_1, y_1) = (1, 3), (x_2, y_2) = (6, 2) # подставьте в формулу для получения m:
# m = (2 - 3) / (6 - 1) = (-1) / 5 = -1/5 #
Каково уравнение прямой, проходящей через начало координат и перпендикулярной линии, проходящей через следующие точки: (3,7), (5,8)?
Y = -2x Прежде всего нам нужно найти градиент линии, проходящей через (3,7) и (5,8) «градиент» = (8-7) / (5-3) «градиент» = 1 / 2 Теперь, поскольку новая линия перпендикулярна линии, проходящей через 2 точки, мы можем использовать это уравнение m_1m_2 = -1, где градиенты двух разных линий при умножении должны равняться -1, если линии перпендикулярны друг другу, т.е. под прямым углом. следовательно, ваша новая линия будет иметь градиент 1 / 2m_2 = -1 m_2 = -2 Теперь мы можем использовать формулу градиента точки, чтобы найти уравнение линии y-0 = -2 (x-0) y = - 2x
Каково уравнение линии, проходящей через начало координат и перпендикулярной линии, проходящей через следующие точки: (9,2), (- 2,8)?
6y = 11x Линия через (9,2) и (-2,8) имеет наклон цвета (белый) ("XXX") m_1 = (8-2) / (- 2-9) = - 6/11 Все линии, перпендикулярные этому, будут иметь цветовой наклон (белый) ("XXX") m_2 = -1 / m_1 = 11/6. Используя форму точки наклона, линия через начало координат с этим перпендикулярным наклоном будет иметь уравнение: цвет (белый) ("XXX") (y-0) / (x-0) = 11/6 или цвет (белый) ("XXX") 6y = 11x
Каков наклон линии, проходящей через точку (-1, 1) и параллельной линии, проходящей через (3, 6) и (1, -2)?
Ваш уклон равен (-8) / - 2 = 4. Уклоны параллельных линий такие же, как и у них одинаковый подъем и бег на графике. Наклон можно найти с помощью «slope» = (y_2-y_1) / (x_2-x_1). Поэтому, если мы введем номера линии, параллельные оригиналу, мы получим «наклон» = (-2 - 6) / (1-3). Это затем упрощается до (-8) / (- 2). Ваш рост или сумма, на которую он увеличивается, составляет -8, а ваш пробег или сумма, на которую он идет, составляет -2