Ответ:
Возможные длины сторон треугольника: (8, 11 и 16), (5.82, 8 и 11.64) и (4, 5.5 и 8).
Объяснение:
Стороны двух одинаковых треугольников пропорциональны друг другу.
Поскольку треугольник A имеет стороны длиной 32, 44 и 64, а треугольник B аналогичен треугольнику A и имеет сторону длины 8, последний может быть пропорционален 32, 44 или 64.
Если он пропорционален 32, две другие стороны могут быть
Если он пропорционален 44, две другие стороны могут быть
Если это пропорционально 64, две другие стороны могут быть
Треугольник А имеет стороны длиной 12, 16 и 8. Треугольник B похож на треугольник A и имеет сторону длиной 16. Каковы возможные длины двух других сторон треугольника B?
Две другие стороны b могут быть цветными (черными) ({21 1/3, 10 2/3}) или цветными (черными) ({12,8}) или цветными (черными) ({24,32}) " , цвет (синий) (12),»
Треугольник А имеет стороны длиной 12, 16 и 18. Треугольник B похож на треугольник A и имеет сторону длиной 16. Каковы возможные длины двух других сторон треугольника B?
Существует три возможных набора длин для треугольника B. Чтобы треугольники были похожи, все стороны треугольника A находятся в одинаковых пропорциях с соответствующими сторонами в треугольнике B. Если мы назовем длины сторон каждого треугольника {A_1, A_2 и A_3} и {B_1, B_2 и B_3} можно сказать: A_1 / B_1 = A_2 / B_2 = A_3 / B_3 или 12 / B_1 = 16 / B_2 = 18 / B_3. Данная информация говорит о том, что одна из сторон треугольника B 16, но мы не знаем, с какой стороны. Это может быть самая короткая сторона (B_1), самая длинная сторона (B_3) или «средняя» сторона (B_2), поэтому мы должны рассмотреть все возможности,
Треугольник А имеет стороны длиной 12, 9 и 8. Треугольник B похож на треугольник A и имеет сторону длиной 16. Каковы возможные длины двух других сторон треугольника B?
Две другие стороны треугольника: Случай 1: 12, 10.6667 Случай 2: 21.3333, 14.2222 Случай 3: 24, 18 Треугольники A и B похожи. Случай (1): .16 / 12 = b / 9 = c / 8 b = (16 * 9) / 12 = 12 c = (16 * 8) / 12 = 10.6667 Возможные длины двух других сторон треугольника B равны 9 , 12, 10.6667 Случай (2): .16 / 9 = b / 12 = c / 8 b = (16 * 12) /9=21.3333 c = (16 * 8) /9=14.2222 Возможные длины двух других сторон треугольник B равен 9, 21,3333, 14,2222. Случай (3): .16 / 8 = b / 12 = c / 9 b = (16 * 12) / 8 = 24 c = (16 * 9) / 8 = 18 Возможные длины две другие стороны треугольника B - 8, 24, 18