Ответ:
Объяснение:
Период как sin kt, так и cos kt равен
Здесь отдельные периоды для двух терминов
Составной период для суммы определяется как
Период f (t) =
Покажите, что cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Я немного запутался, если бы я сделал Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), он станет отрицательным, так как cos (180 ° -theta) = - costheta в второй квадрант. Как мне доказать вопрос?
Пожалуйста, смотрите ниже. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi (4pi) / 10) + cos ^ 2 (pi (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Что такое период и основной период y (x) = sin (2x) + cos (4x)?
Y (x) - сумма двух тригонометрических функций. Период греха 2x будет (2pi) / 2, то есть пи или 180 градусов. Период cos4x будет (2pi) / 4, то есть пи / 2 или 90 градусов. Найдите LCM 180 и 90. Это было бы 180. Следовательно, период данной функции будет пи
Каков период f (тета) = sin 4 т - cos 5 т?
2pi Период греха (4t) -> (2pi) / 4 = pi / 2 Период cos (5t) ---> (2pi) / 5 Наименьшее общее кратное число pi / 2 и (2pi) / 5 -> 2pi Период f (t) -> 2pi