Ответ:
Объяснение:
Замена
таким образом
Что такое (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) SQRT (5))?
2/7 Мы берем, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5-sqrt5-sqrt3-sqrt3-sqrt3-sqrt3-sqrt3-sqrt3-sqrtr-sq ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3)) ^ 2- (sqrt5) ^ 2) = (отменить (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - отменить (2sqrt15) -5 + 2 * 3 + cancel (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Обратите внимание, что ес
Что такое интеграция 1 / log (sqrt (1-x))?
Здесь log is ln. Ответ: (2sum ((- 1) ^ (n-1)) / n (x / ln (1-x)) ^ n, n = 1, 2, 3, ..oo) + C .. = 2ln (1 + x / (ln (1-x))) + C, | x / (ln (1-x)) | <1 Последовательно используйте intu dv = uv-intv du. inti / (lnsqrt (1-x) dx = 2int1 / ln (1-x) dx = 2 [x / ln (1-x) -intxd (1 / ln (1-x))] = 2 [[x / ln (1-x) -intx / (ln (1-x)) ^ 2 dx] = 2 [[x / ln (1-x) -int1 / (ln (1-x)) ^ 2 d (x ^ 2/2)] и т. Д. Конечный бесконечный ряд появляется в качестве ответа. Мне еще предстоит изучить интервал сходимости для ряда. На данный момент | x / (ln (1-x)) | <1 Явное Интервал для x, исходя из этого неравенства, регулирует интервал для люб
Что такое интеграция (xdx) / sqrt (1-x) ??
-2 / 3sqrt (1-x) (2 + x) + C Пусть, u = sqrt (1-x) или, u ^ 2 = 1-x или, x = 1-u ^ 2 или, dx = -2udu Теперь int (xdx) / (sqrt (1-x)) = int (1-u ^ 2) (- 2udu) / u = int 2u ^ 2du -int 2du Теперь int 2u ^ 2 du -int 2du = ( 2u ^ 3) / 3 - 2 (u) + C = 2 / 3u (u ^ 2-3) + C = 2/3 кв. (1-x) {(1-x) -3} + C = 2/3 кв. (1-x) (- 2-x) + C = -2 / 3 кв. (1-x) (2 + x) + C