Теперь мы смотрим на наши количества, чтобы увидеть, что нам нужно и что у нас есть.
Итак, мы знаем скорость, с которой меняется громкость. Мы также знаем начальный объем, который позволит нам решить для радиуса. Мы хотим знать скорость, с которой радиус меняется после
Мы вставляем это значение для «r» внутри производной:
Мы знаем это
Решение для
Надеюсь, это поможет!
Джон ехал в течение двух часов со скоростью 50 миль в час (миль в час) и еще x часов со скоростью 55 миль в час. Если средняя скорость всего путешествия составляет 53 мили в час, что из следующего можно использовать, чтобы найти x?
X = "3 часа" Идея в том, что вам нужно работать в обратном направлении от определения средней скорости, чтобы определить, сколько времени Джон провел за рулем со скоростью 55 миль в час. Под средней скоростью можно понимать отношение общего пройденного расстояния к общему времени, необходимому для его преодоления. «средняя скорость» = «общее расстояние» / «общее время» В то же время расстояние может быть выражено как произведение между скоростью (в данном случае, скоростью) и временем. Таким образом, если Джон проехал 2 часа со скоростью 50 миль в час, то он преодолел расстояние d_1
Вода сливается из конусообразного резервуара диаметром 10 футов и глубиной 10 футов с постоянной скоростью 3 фут3 / мин. Насколько быстро падает уровень воды, когда глубина воды составляет 6 футов?
Отношение радиуса r верхней поверхности воды к глубине воды w является постоянной величиной, зависящей от общих размеров конуса r / w = 5/10 rarr r = w / 2. Объем конуса вода задается формулой V (w, r) = pi / 3 r ^ 2w или, в терминах просто w для данной ситуации, V (w) = pi / (12) w ^ 3 (dV) / (dw) = pi / 4w ^ 2 rarr (dw) / (dV) = 4 / (piw ^ 2) Нам говорят, что (dV) / (dt) = -3 (куб.фут / мин.) (dw) / ( dt) = (dw) / (dV) * (dV) / (dt) = 4 / (piw ^ 2) * (- 3) = (- 12) / (piw ^ 2) Когда w = 6, глубина воды равна изменяется со скоростью (dw) / (dt) (6) = = (-12) / (pi * 36) = -1 / (3pi) Выражается в терминах того, насколько б
Какой процент вещества остается через шесть часов, если радиоактивное вещество распадается со скоростью 3,5% в час?
Поскольку количество вещества становится 96,5% каждый час, количество R (t) радиоактивного вещества может быть выражено как R (t) = R_0 (0,965) ^ t, где R_0 - начальное количество, а t - время в ч. Процентное содержание вещества через 6 часов можно найти с помощью {R (6)} / {R_0} cdot100 = {R_0 (0,965) ^ 6} / R_0cdot100 приблизительно 80,75%. Я надеюсь, что это было полезно.