Вы можете использовать отношения:
С:
Если у вас возникли трудности, взгляните на решение ниже.
Решение:
Это также можно записать как:
Ответ
Определить форму точки-наклона линии, проходящей через точку
Общая форма точки-наклона
Для точки
Точка-уклон для данной точки и уклона.
Что такое уравнение в стандартной форме перпендикулярной линии, проходящей через (5, -1), и что такое x-пересечение линии?
Ниже приведены шаги для решения этого вида вопроса: обычно с таким вопросом у нас есть линия для работы, которая также проходит через заданную точку. Так как нам это не дано, я сделаю один, а затем перейду к вопросу. Исходная линия (так называемая ...) Чтобы найти линию, которая проходит через заданную точку, мы можем использовать форму линии с наклоном точки, общая форма которой: (y-y_1) = m (x-x_1 ) Я собираюсь установить m = 2. Наша линия тогда имеет уравнение: (y - (- 1)) = 2 (x-5) => y + 1 = 2 (x-5), и я могу выразить эту линию в форме точечного наклона: y = 2x- 11 и стандартная форма: 2x-y = 11 Для нахождения наше
Докажите, что для данной линии и точки, не находящейся на этой линии, есть ровно одна линия, которая проходит через эту точку перпендикулярно этой линии? Вы можете сделать это математически или с помощью строительства (древние греки сделали)?
Увидеть ниже. Предположим, что данной линией является AB, а точка - это P, которой нет на AB. Теперь предположим, что мы нарисовали перпендикулярное ПО на AB. Мы должны доказать, что этот PO является единственной прямой, проходящей через P, которая перпендикулярна AB. Теперь мы будем использовать конструкцию. Построим еще один перпендикулярный ПК на AB из точки P. Теперь Доказательство. У нас есть, OP перпендикулярно AB [Я не могу использовать перпендикулярный знак, как раздражает] И, Кроме того, PC перпендикулярно AB. Итак, ОП || ПК. [Оба перпендикуляра на одной линии.] Теперь и OP, и PC имеют общую точку P, и они паралле
Какое утверждение лучше всего описывает уравнение (x + 5) 2 + 4 (x + 5) + 12 = 0? Уравнение является квадратичным по форме, потому что оно может быть переписано как квадратное уравнение с подстановкой u u = (x + 5). Уравнение является квадратичным по форме, потому что, когда оно расширяется,
Как объясняется ниже, u-замещение будет описывать его как квадратичное по u. Для квадратичного по x его разложение будет иметь наибольшую степень x как 2, лучше всего будет описывать его как квадратичное по x.