Как вы делите (2i -4) / (7 i -2) в тригонометрической форме?

Как вы делите (2i -4) / (7 i -2) в тригонометрической форме?
Anonim

Ответ:

# (2i-4) / (7i-2) = (2sqrt (265)) / 53 cos 47.48^@+i*sin 47,48 ^ @ #

Объяснение:

Решение:

# 2i-4 = #

#sqrt (4 + 16) cos (tan ^ -1 (-1/2)) + i * sin (tan ^ -1 (-1/2)) #

#sqrt (20) cos (tan ^ -1 (-1/2)) + i * sin (tan ^ -1 (-1/2)) #

# 7i-2 = #

#sqrt (4 + 49) cos (tan ^ -1 (-7/2)) + i * sin (tan ^ -1 (-7/2))

# (2i-4) / (7i-2) = #

#sqrt (20) / sqrt (53) cos (tan ^ -1 (-1/2) -tan ^ -1 (-1/2)) + i * sin (tan ^ -1 (-1/2) -тань ^ -1 (-1/2)) #

# (2i-4) / (7i-2) = (2sqrt (265)) / 53 cos 47.48^@+i*sin 47,48 ^ @ #

Да благословит Бог ….. Я надеюсь, что объяснение полезно.