Ответ:
Объяснение:
Для комплексного числа
Дано
Доказательство:
Как вы делите (i + 3) / (-3i +7) в тригонометрической форме?
0.311 + 0.275i Сначала я перепишу выражения в виде a + bi (3 + i) / (7-3i) для комплексного числа z = a + bi, z = r (costheta + isintheta), где: r = sqrt (a ^ 2 + b ^ 2) theta = tan ^ -1 (b / a) Давайте назовем 3 + i z_1 и 7-3i z_2. Для z_1: z_1 = r_1 (costheta_1 + isintheta_1) r_1 = sqrt (3 ^ 2 + 1 ^ 2) = sqrt (9 + 1) = sqrt (10) theta_1 = tan ^ -1 (1/3) = 0,32 ^ c z_1 = sqrt (10) (cos (0,32) + isin (0,32)) Для z_2: z_2 = r_2 (costheta_2 + isintheta_2) r_2 = sqrt (7 ^ 2 + (- 3) ^ 2) = sqrt (58) theta_2 = tan ^ -1 (-3/7) = - 0,40 ^ c Однако, поскольку 7-3i находится в квадранте 4, нам нужно получить эквивалент положительно
Как вы делите (2i + 5) / (-7 i + 7) в тригонометрической форме?
0.54 (cos (1.17) + isin (1.17)) Давайте разберем их на два отдельных комплексных числа для начала, один из которых является числителем, 2i + 5, а другой - знаменателем -7i + 7. Мы хотим получить их от линейной (x + iy) формы до тригонометрической (r (costheta + isintheta), где theta - аргумент, а r - модуль. Для 2i + 5 мы получаем r = sqrt (2 ^ 2 + 5 ^ 2). ) = sqrt29 tantheta = 2/5 -> theta = arctan (2/5) = 0.38 "рад" и для -7i + 7 получаем r = sqrt ((- 7) ^ 2 + 7 ^ 2) = 7sqrt2 Разработка аргумент для второго сложнее, потому что он должен быть между -pi и pi. Мы знаем, что -4i + 7 должно быть в четвертом квадр
Как вы делите (9i-5) / (-2i + 6) в тригонометрической форме?
Frac {-5 + 9i} {6-2i} = {-12 + 11i} / 10, но я не смог закончить в тригонометрической форме. Это красивые комплексные числа в прямоугольной форме. Это большая трата времени, чтобы преобразовать их в полярные координаты, чтобы разделить их. Давайте попробуем оба варианта: frac {-5 + 9i} {6-2i} cdot {6 + 2i} / {6 + 2i} = {-48 + 44i} / {40} = {-12 + 11i} / 10 Это было просто. Давайте контрастировать. В полярных координатах мы имеем -5 + 9i = sqrt {5 ^ 2 + 9 ^ 2} e ^ {i text {atan2} (9, -5)} Я пишу текст {atan2} (y, x) как правильные два параметра, четыре квадранта, обратная касательная. 6-2i = sqrt {6 ^ 2 + 2 ^ 2} e ^ {i text