Ответ:
Объяснение:
Три угла
Чтобы периметр треугольника был максимально большим, данная сторона должна быть самой маленькой из сторон, то есть стороной, противоположной наименьшему углу. Длина двух других сторон должна быть
Два угла треугольника имеют углы (2 пи) / 3 и (пи) / 4. Если одна сторона треугольника имеет длину 12, каков максимально длинный периметр треугольника?
Максимально возможный периметр составляет 12 + 40,155 + 32,786 = 84,941. Поскольку два угла равны (2pi) / 3 и pi / 4, третий угол равен pi-pi / 8-pi / 6 = (12pi-8pi-3pi) / 24- = pi / 12. Для самой длинной стороны периметра длины 12, скажем, a, она должна быть противоположна наименьшему углу pi / 12, и тогда, используя формулу синуса, две другие стороны будут 12 / (sin (pi / 12)) = b / (sin ((2pi) / 3)) = c / (sin (pi / 4)) Следовательно, b = (12sin ((2pi) / 3)) / (sin (pi / 12)) = (12xx0.866) /0.2588=40.155 и c = ( 12xxsin (pi / 4)) / (sin (pi / 12)) = (12xx0.7071) /0.2588=32.786 Следовательно, максимально длинный периметр
Два угла треугольника имеют углы (2 пи) / 3 и (пи) / 4. Если одна сторона треугольника имеет длину 4, каков максимально длинный периметр треугольника?
P_max = 28,31 единиц. Задача дает вам два из трех углов в произвольном треугольнике. Поскольку сумма углов в треугольнике должна составлять до 180 градусов, или пи радиан, мы можем найти третий угол: (2pi) / 3 + pi / 4 + x = pi x = pi- (2pi) / 3- pi / 4 x = (12pi) / 12- (8pi) / 12- (3pi) / 12 x = pi / 12 Давайте нарисуем треугольник: задача состоит в том, что одна из сторон треугольника имеет длину 4, но это не указывает, с какой стороны. Однако в любом данном треугольнике верно, что наименьшая сторона будет противоположна наименьшему углу. Если мы хотим максимизировать периметр, мы должны сделать сторону длиной 4 стороной
Два угла треугольника имеют углы (2 пи) / 3 и (пи) / 4. Если одна сторона треугольника имеет длину 15, каков максимально длинный периметр треугольника?
P = 106,17 По наблюдениям, самая длинная длина будет противоположна самому широкому углу, а самая короткая длина противоположна наименьшему углу. Наименьший угол, учитывая два указанных, составляет 1/12 (пи), или 15 °. Используя длину 15 в качестве самой короткой стороны, углы с каждой стороны от нее являются заданными. Мы можем вычислить высоту треугольника h по этим значениям, а затем использовать ее в качестве стороны для двух треугольных частей, чтобы найти две другие стороны исходного треугольника. загар (2 / 3pi) = ч / (15-х); tan (1 / 4pi) = ч / х -1,732 = ч / (15-х); 1 = ч / х -1,732 хх (15-х) = ч; И x = h Зам