Тело было найдено в 10 часов утра на складе, где температура была 40 ° F. Судмедэксперт установил, что температура тела составляет 80 ° F. Какое было приблизительное время смерти?

Тело было найдено в 10 часов утра на складе, где температура была 40 ° F. Судмедэксперт установил, что температура тела составляет 80 ° F. Какое было приблизительное время смерти?
Anonim

Ответ:

Приблизительное время смерти #8:02:24# есть.

Важно отметить, что это температура кожи тела. Медицинский эксперт будет измерять внутреннюю температуру, которая будет снижаться гораздо медленнее.

Объяснение:

Закон охлаждения Ньютона гласит, что скорость изменения температуры пропорциональна разности температуры окружающей среды. Т.е.

# (dT) / (dt) prop T - T_0 #

Если #T> T_0 # тогда тело должно остыть, поэтому производная должна быть отрицательной, поэтому мы вставляем константу пропорциональности и получаем

# (dT) / (dt) = -k (T - T_0) #

Умножение скобки и смещение материала о нас дает нам:

# (dT) / (dt) + kT = kT_0 #

Теперь можно использовать интегрирующий фактор метода решения ОДУ.

#I (x) = e ^ (intkdt) = e ^ (kt) #

Умножьте обе стороны на #I (х) # получить

# e ^ (kt) (dT) / (dt) + e ^ (kt) kT = e ^ (kt) kT_0 #

Обратите внимание, что с помощью правила продукта мы можем переписать LHS, оставив:

# d / (dt) Te ^ (kt) = e ^ (kt) kT_0 #

Интегрировать обе стороны по отношению к # Т #.

# Te ^ (kt) = kT_0 int e ^ (kt) dt #

# Te ^ (kt) = T_0e ^ (kt) + C #

Поделить на # Е ^ (кт) #

#T (t) = T_0 + Ce ^ (- kt) #

Средняя температура тела человека # 98,6 ° "F" #.

# подразумевает T (0) = 98,6 #

# 98.6 = 40 + Ce ^ 0 #

#implies C = 58,6 #

Позволять # T_f # быть временем, когда тело найдено.

#T (t_f) = 80 #

# 80 = 40 + 58,6e ^ (- kt_f) #

# 40 / (58,6) = e ^ (- kt_f) #

#ln (40 / (58.6)) = -kt_f #

#t_f = - ln (40 / (58.6)) / k #

#t_f = - ln (40 / (58,6)) / (0,1947) #

#t_f = 1,96 часа #

Таким образом, с момента смерти, предполагая, что тело немедленно начало остывать, потребовалось 1,96 часа, чтобы достичь 80 ° F, после чего оно было найдено.

# 1.96hr = 117.6мин #

Приблизительное время смерти #8:02:24# я