Что такое (квадратный корень из [6] + 2 квадратный корень из [2]) (4 квадратный корень из [6] - 3 квадратный корень из 2)?

Что такое (квадратный корень из [6] + 2 квадратный корень из [2]) (4 квадратный корень из [6] - 3 квадратный корень из 2)?
Anonim

Ответ:

# 12 + 5sqrt12 #

Объяснение:

Мы умножаем кросс-умножение, то есть

# (sqrt6 + 2sqrt2) (4sqrt6 - 3sqrt2) #

равняется

# sqrt6 * 4sqrt6 + 2sqrt2 * 4sqrt6 -sqrt6 * 3sqrt2 - 2sqrt2 * 3sqrt2 #

Квадратные корни сами по себе равны числу под корнем, поэтому

# 4 * 6 + 8sqrt2sqrt6 - 3sqrt6sqrt2 - 6 * 2 #

Мы ставим # Sqrt2sqrt6 # в качестве доказательства:

# 24 + (8-3) sqrt6sqrt2 - 12 #

Мы можем объединить эти два корня в одном, в конце концов #sqrtxsqrty = sqrt (xy) # до тех пор, пока они не оба отрицательны. Итак, мы получаем

# 24 + 5sqrt12 - 12 #

Наконец, мы просто берем разницу двух констант и называем это день

# 12 + 5sqrt12 #