Входная плата для школьной игры составляет 4,00 $ для студентов и 2,00 $ для взрослых. В субботу 200 человек посетили продажу билетов на общую сумму 500 долларов. Какая система уравнений будет использована для решения этой проблемы?
{(s + a = 200), (4s + 2a = 500):} Пусть color (white) ("XXX") s = количество учеников color (white) ("XXX") a = количество взрослых и уравнения В ответе (выше) должен следовать как прямой алгебраический перевод.
Дискриминант квадратного уравнения равен -5. Какой ответ описывает количество и тип решения уравнения: 1 комплексное решение 2 реальных решения 2 комплексных решения 1 реальное решение?
Ваше квадратное уравнение имеет 2 комплексных решения. Дискриминант квадратного уравнения может дать нам только информацию об уравнении вида: y = ax ^ 2 + bx + c или параболе. Поскольку высшая степень этого многочлена равна 2, он должен иметь не более 2 решений. Дискриминант - это просто материал под символом квадратного корня (+ -sqrt ("")), но не сам символ квадратного корня. + -sqrt (b ^ 2-4ac) Если дискриминант, b ^ 2-4ac, меньше нуля (т. е. любое отрицательное число), то у вас будет отрицательный знак под символом квадратного корня. Отрицательные значения под квадратными корнями являются сложными решениями.
Использовать дискриминант для определения количества и типа решений, которые имеет уравнение? x ^ 2 + 8x + 12 = 0 A.не реальное решение B. одно реальное решение C. два рациональных решения D. два иррациональных решения
C. два Рациональных решения. Решение квадратного уравнения a * x ^ 2 + b * x + c = 0 есть x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In рассматриваемая проблема, a = 1, b = 8 и c = 12 Подставляя, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 или x = (-8+ - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 и x = (-8 - 4) / 2 x = (- 4) / 2 и x = (-12) / 2 x = - 2 и x = -6