Произведение двух последовательных четных целых чисел равно 24. Найдите два целых числа. Ответ в виде парных точек с наименьшим из двух целых чисел первым. Ответ?
Два последовательных четных целых числа: (4,6) или (-6, -4) Позвольте, color (red) (n и n-2 быть двумя последовательными четными целыми числами, где color (красный) (n inZZ Произведение n и n-2 равно 24, т.е. n (n-2) = 24 => n ^ 2-2n-24 = 0 Теперь [(-6) + 4 = -2 и (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 или n + 4 = 0 ... to [n inZZ] => цвет (красный) (n = 6 или n = -4 (i) цвет (красный) (n = 6) => цвет (красный) (n-2) = 6-2 = цвет (красный) (4) Итак, два последовательных четных целых числа: (4,6) (ii)) цвет (красный) (n = -4) => цвет (красный) (n-2) = -4-2 = ц
Зная формулу для суммы N целых чисел a) что такое сумма первых N последовательных квадратных целых чисел, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? б) Сумма первых N последовательных кубических целых чисел Sigma_ (k = 1) ^ N k ^ 3?
Для S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Имеется sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3 сумма_ {i = 0} ^ ni ^ 2 + 3 сумма_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3 сумма_ {i = 0} ^ ni ^ 2 + 3 сумма_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 решения для sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni, но sum_ {i = 0} ^ ni = ((n + 1) n) / 2, поэтому sum_ {i = 0} ^ ni ^ 2 = (n
"Лена имеет 2 целых числа подряд.Она замечает, что их сумма равна разнице между их квадратами. Лена выбирает еще 2 последовательных целых числа и замечает то же самое. Докажите алгебраически, что это верно для любых двух последовательных целых чисел?
Пожалуйста, обратитесь к объяснению. Напомним, что последовательные целые числа отличаются на 1. Следовательно, если m одно целое число, то последующее целое число должно быть n + 1. Сумма этих двух целых чисел равна n + (n + 1) = 2n + 1. Разница между их квадратами составляет (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, по желанию! Почувствуй радость математики!