Ответ:
Объяснение:
Начнем с факторинга тринома
Факторами 12 являются 4 и 3.
Теперь установите оба биномиальных фактора равными нулю и решите.
Lim 3x / tan3x x 0 Как это решить? Я думаю, что ответ будет 1 или -1, кто может решить это?
Предел равен 1. Lim_ (x -> 0) (3x) / (tan3x) = Lim_ (x -> 0) (3x) / ((sin3x) / (cos3x)) = Lim_ (x -> 0) (3xcos3x ) / (sin3x) = Lim_ (x -> 0) (3x) / (sin3x) .cos3x = Lim_ (x -> 0) цвет (красный) ((3x) / (sin3x)). cos3x = Lim_ (x - > 0) cos3x = Lim_ (x -> 0) cos (3 * 0) = Cos (0) = 1 Помните, что: Lim_ (x -> 0) цвет (красный) ((3x) / (sin3x)) = 1 и Lim_ (x -> 0) цвет (красный) ((sin3x) / (3x)) = 1
Что такое 2/3 умножения на 12? Мне нужно это быстро, потому что друг попросил у меня математическую игру, но они забыли, как это сделать, и я забыл это сделать, это просто ускользнуло из моей памяти, поэтому, пожалуйста, объясните, спасибо?
8 вам нужно умножить 2/3 на 12. вы можете либо: преобразовать 12 в дробные (12/1), умножить дробные 12/1 и 2/3, чтобы получить (12 * 2) / (1 * 3), что дает 24/3, что составляет 8/1 или 8. или: разделите 12 на 3 (это 1/3 * 12 или 4), умножьте на 2 (4 * 2 = 8) для обоих, ответ равен 8.
Решить x²-3 <3. Это выглядит просто, но я не смог получить правильный ответ. Ответ (- 5, -1) U (1, 5). Как решить это неравенство?
Решение состоит в том, что неравенство должно быть abs (x ^ 2-3) <color (red) (2) Как обычно с абсолютными значениями, разбить на случаи: Случай 1: x ^ 2 - 3 <0 Если x ^ 2 - 3 <0 тогда abs (x ^ 2-3) = - (x ^ 2-3) = -x ^ 2 + 3 и наше (исправленное) неравенство становится: -x ^ 2 + 3 <2 Добавить x ^ 2-2 к обе стороны, чтобы получить 1 <x ^ 2 Итак, x в (-oo, -1) uu (1, oo) Из условия случая мы имеем x ^ 2 <3, поэтому x в (-sqrt (3), sqrt (3)) Следовательно: x в (-sqrt (3), sqrt (3)) nn ((-oo, -1) uu (1, oo)) = (-sqrt (3), -1) uu (1) , sqrt (3)) Случай 2: x ^ 2 - 3> = 0 Если x ^ 2 - 3> = 0, то abs (x ^