Произведение двух последовательных четных целых чисел равно 24. Найдите два целых числа. Ответ в виде парных точек с наименьшим из двух целых чисел первым. Ответ?
Два последовательных четных целых числа: (4,6) или (-6, -4) Позвольте, color (red) (n и n-2 быть двумя последовательными четными целыми числами, где color (красный) (n inZZ Произведение n и n-2 равно 24, т.е. n (n-2) = 24 => n ^ 2-2n-24 = 0 Теперь [(-6) + 4 = -2 и (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 или n + 4 = 0 ... to [n inZZ] => цвет (красный) (n = 6 или n = -4 (i) цвет (красный) (n = 6) => цвет (красный) (n-2) = 6-2 = цвет (красный) (4) Итак, два последовательных четных целых числа: (4,6) (ii)) цвет (красный) (n = -4) => цвет (красный) (n-2) = -4-2 = ц
Сумма двух последовательных четных целых чисел равна -102. Какие два целых числа?
-50 и -52 Четное число обычно выражается через 2n. Таким образом, сумма четного и его последовательных выражений равна 2n + 2n + 2, это должно быть равно -102. Таким образом, мы должны решить почти тривиальное уравнение 4n + 2 = -102, которое дает n = -26. Это означает, что два числа: 2 * (- 26) = - 52 и 2 * (- 26) + 2 = -50
"Лена имеет 2 целых числа подряд.Она замечает, что их сумма равна разнице между их квадратами. Лена выбирает еще 2 последовательных целых числа и замечает то же самое. Докажите алгебраически, что это верно для любых двух последовательных целых чисел?
Пожалуйста, обратитесь к объяснению. Напомним, что последовательные целые числа отличаются на 1. Следовательно, если m одно целое число, то последующее целое число должно быть n + 1. Сумма этих двух целых чисел равна n + (n + 1) = 2n + 1. Разница между их квадратами составляет (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, по желанию! Почувствуй радость математики!