Линия GH проходит через точки (2, 5) и (6, 9). Что такое линейное уравнение для линии GH?
Y = x + 3 "уравнение линии в" color (blue) "форме пересекающегося наклона": • color (white) (x) y = mx + b "где m - наклон, а b - y-перехват" «для расчета m используйте« формулу градиента цвета (синего цвета) »color (красный) (полоса (ul (| цвет (белый) (2/2)) цвет (черный) (m = (y_2-y_1) / (x_2- x_1)) color (white) (2/2) |))) "let" (x_1, y_1) = (2,5) "and" (x_2, y_2) = (6,9) rArrm = (9-5 ) / (6-2) = 4/4 = 1 rArry = x + blarrcolor (blue) "- это уравнение в частных производных" ", чтобы найти b, заменив одну из двух заданных точек на" "
Что такое уравнение в стандартной форме перпендикулярной линии, проходящей через (5, -1), и что такое x-пересечение линии?
Ниже приведены шаги для решения этого вида вопроса: обычно с таким вопросом у нас есть линия для работы, которая также проходит через заданную точку. Так как нам это не дано, я сделаю один, а затем перейду к вопросу. Исходная линия (так называемая ...) Чтобы найти линию, которая проходит через заданную точку, мы можем использовать форму линии с наклоном точки, общая форма которой: (y-y_1) = m (x-x_1 ) Я собираюсь установить m = 2. Наша линия тогда имеет уравнение: (y - (- 1)) = 2 (x-5) => y + 1 = 2 (x-5), и я могу выразить эту линию в форме точечного наклона: y = 2x- 11 и стандартная форма: 2x-y = 11 Для нахождения наше
Каково уравнение линии, проходящей через начало координат и перпендикулярной линии, проходящей через следующие точки: (9,2), (- 2,8)?
6y = 11x Линия через (9,2) и (-2,8) имеет наклон цвета (белый) ("XXX") m_1 = (8-2) / (- 2-9) = - 6/11 Все линии, перпендикулярные этому, будут иметь цветовой наклон (белый) ("XXX") m_2 = -1 / m_1 = 11/6. Используя форму точки наклона, линия через начало координат с этим перпендикулярным наклоном будет иметь уравнение: цвет (белый) ("XXX") (y-0) / (x-0) = 11/6 или цвет (белый) ("XXX") 6y = 11x