Ответ:
Ответ:
Объяснение:
Правило цитирования гласит:
Затем:
Аналогично для
Как вы дифференцируете y = (2 + sinx) / (x + cosx)?
Dy / dx = (xcos (x) + sin (x) - 1) / (x + cos (x)) ^ 2 "Во-первых, давайте вспомним правило отношения:" qquad qquad qquad qquad qquad [f (x) / g (x)] ^ ' = {g (x) f' (x) - f (x) g '(x)} / {g (x) ^ 2} quad. "Нам дана функция дифференцирования:" qquad qquad qquad qquad qquad qquad qquad qquad qquad y = {2 + sinx} / {x + cosx} quad. Используйте фактор-правило для получения следующего: y '= {[(x + cosx) (2 + sinx)'] - [(2 + sinx) (x + cosx) ']} / (x + cosx) ^ 2 y '= {[(x + cosx) (cosx)] - [(2 + sinx) (1-sinx)]} / (x + cos x) ^ 2, умножив числитель, вы получите следующее: y' =
Молли купила леденец за 35 центов. Сколько разных способов она могла заплатить за это, используя десять центов, копейки и копейки из своей копилки, используя все три типа монет?
См. Процесс решения ниже: поскольку Молли должна использовать все три типа монет, давайте начнем с: Решение 1: Молли использует только 1 цент и 1 никель, 1 цент и 1 никель = 10 + 5 = 15 Тогда 35 - 15 = 20 1 цент, 1 никель, 20 копеек Решение 2 Заберите 5 копеек и используйте 2 никеля: 1 цент и 2 никеля = 10 + 10 = 20 Тогда 35 - 20 = 15 1 цент, 2 никеля, 15 копеек (мы не можем сделать это 2 десять центов и 0 никелей, потому что мы должны использовать все три типа монет) Решение 3 Уберите еще 5 копеек и используйте 3 никеля: 1 цент и 3 никеля = 10 + 15 = 25 Тогда 35 - 25 = 10 1 цент, 3 никеля, 10 копейки Раствор 4 Уберите 2 н
Используя определение предела, как вы дифференцируете f (x) = (3x) / (7x-3)?
Абсурдно дифференцировать это без использования проверенных законов. f '(x) = - 9 / (7x-3) ^ 2 Вам действительно нужно нести все это, пока вы на самом деле не докажете правило цитирования (которое требует других болезненных доказательств до этого), а затем докажете 3 другие производные функции. На самом деле это может быть более 10 доказательств правил. Извините, но я не думаю, что ответ здесь поможет вам. Однако это результат: f '(x) = - 9 / (7x-3) ^ 2