Подставляя в вышеприведенное уравнение получим,
Сейчас
Таким образом, вышеизложенное сводится к
Докажите это: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Доказательство ниже с использованием сопряженных и тригонометрической версии теоремы Пифагора. Часть 1 sqrt ((1-cosx) / (1 + cosx)) цвет (белый) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) цвет (белый) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) цвет (белый) («XXX») = (1-cosx) / sqrt (1-cos ^ 2x) Часть 2 Аналогично sqrt ((1 + cosx) / (1-cosx) цвет (белый) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) Часть 3: Объединение терминов sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) цвет (белый) («XXX») = (1-cosx) / sqrt (1-cos ^ 2x) + (1 + co
Докажите это: tan ^ 5x = ((1 / (1-sinx) ^ 2) - (1 / (1 + sinx) ^ 2)) / ((1 / (1-cosx) ^ 2) - (1 / ( 1 + cosx) 2 ^)?
Доказать tg ^ 5x = ((1 / (1-sinx) ^ 2) - (1 / (1 + sinx) ^ 2)) / ((1 / (1-cosx) ^ 2) - (1 / (1 + cosx) ^ 2) RHS = ((1 / (1-sinx) ^ 2) - (1 / (1 + sinx) ^ 2)) / ((1 / (1-cosx) ^ 2) - (1 / (1 + cosx) ^ 2) = (((1 + sinx) ^ 2- (1-sinx) ^ 2) / (1-sin ^ 2x) ^ 2) / (((1 + cosx ^ 2) - ( 1-cosx) ^ 2) / (1-cos ^ 2x) ^ 2) = ((4sinx) / cos ^ 4x) / ((4cosx) / (sin ^ 4x)) = sin ^ 5x / cos ^ 5x = tan ^ 5x = LHS Доказано
Докажите, что ?? (Sinx + Sin2x + Sin3x) / (cosx + cos2x + cos3x) = tan2x
LHS = (sinx + sin2x + sin3x) / (cosx + cos2x + cos3x) = (2sin ((3x + x) / 2) * cos ((3x-x) / 2) + sin2x) / (2cos ((3x +) x) / 2) * cos ((3x-x) / 2) + cos2x = (2sin2x * cosx + sin2x) / (2cos2x * cosx + cos2x) = (sin2xcancel ((1 + 2cosx))) / (cos2xcancel (( 1 + 2 cosx))) = tan2x = RHS