Ответ:
Объяснение:
Уравнение прямой в
#color (blue) "форма с уклоном" # является.
#color (красный) (бар (уль (| цвет (белый) (2/2) цвет (черный) (у-y_1 = т (х-x_1)) цвет (белый) (2/2) |))) # где m представляет наклон и
# (x_1, y_1) "точка на линии" # Для расчета m используйте
#color (blue) "Формула градиента" #
#color (красный) (бар (ули (| цвет (белый) (2/2) цвета (черный) (т = (y_2-y_1) / (x_2-x_1)) цвет (белый) (2/2) |))) # где
# (x_1, y_1), (x_2, y_2) "2 точки координат" # 2 точки здесь (-1, 3) и (0, -5)
позволять
# (x_1, y_1) = (- 1,3) "и" (x_2, y_2) = (0, -5) #
#rArrm = (- 5-3) / (0 - (- 1)) = - 8 #
# "Для" (x_1, y_1) # используйте любой из 2 заданных пунктов.
# "Использование" (x_1, y_1) = (- 1,3) "и" m = -8 #
# У-3) = - 8 (х - (- 1)) #
# rArry-3 = -8 (x + 1) larrcolor (красный) "в форме уклона" # Распределение скобок и упрощение дает альтернативную версию уравнения.
# У-3 = -8x-8 #
# RArry = -8x-8 + 3 #
# rArry = -8x-5larrcolor (red) "в форме пересечения по склону" #
Каково уравнение линии, которая проходит через (0, -1) и перпендикулярна линии, которая проходит через следующие точки: (8, -3), (1,0)?
7x-3y + 1 = 0 Наклон линии, соединяющей две точки (x_1, y_1) и (x_2, y_2), определяется как (y_2-y_1) / (x_2-x_1) или (y_1-y_2) / (x_1-x_2) ) Поскольку точки (8, -3) и (1, 0), наклон соединяющей их линии будет определяться как (0 - (- 3)) / (1-8) или (3) / (- 7) т.е. -3/7. Произведение наклона двух перпендикулярных линий всегда равно -1. Следовательно, наклон линии, перпендикулярной к нему, будет 7/3, и, следовательно, уравнение в форме наклона можно записать как y = 7 / 3x + c. Поскольку это проходит через точку (0, -1), помещая эти значения в вышеприведенное уравнение, мы получаем -1 = 7/3 * 0 + c или c = 1 Следовательно
Каково уравнение линии, которая проходит через (0, -1) и перпендикулярна линии, которая проходит через следующие точки: (13,20), (16,1)?
Y = 3/19 * x-1 Наклон линии проходит через (13,20) и (16,1) m_1 = (1-20) / (16-13) = - 19/3 Мы знаем условие перпендикулярность между двумя линиями является произведением их наклонов, равным -1: .m_1 * m_2 = -1 или (-19/3) * m_2 = -1 или m_2 = 3/19. Таким образом, линия проходит через (0, -1 ) это y + 1 = 3/19 * (x-0) или y = 3/19 * x-1 график {3/19 * x-1 [-10, 10, -5, 5]} [Ответ]
Каково уравнение линии, которая проходит через (0, -1) и перпендикулярна линии, которая проходит через следующие точки: (-5,11), (10,6)?
Y = 3x-1 "уравнение прямой линии задается как" y = mx + c ", где m = градиент &" c = "y-точка пересечения" "мы хотим, чтобы градиент линии был перпендикулярен линии" «проходя через заданные точки» (-5,11), (10,6) нам понадобится «» m_1m_2 = -1 для данной строки m_1 = (Deltay) / (Deltax) = (y_2-y_1) / (x_2 -x_1): .m_1 = (11-6) / (- 5-10) = 5 / -15 = -5 / 15 = -1 / 3 "" m_1m_2 = -1 => - 1 / 3xxm_2 = -1: .m_2 = 3, поэтому требуемое уравнение становится y = 3x + c, проходит через "" (0, -1) -1 = 0 + c => c = -1: .y = 3x-1