Покажите, что если x вещественное и x ^ 2 + 5 <6x, то x должно лежать между 1 и 5?

Покажите, что если x вещественное и x ^ 2 + 5 <6x, то x должно лежать между 1 и 5?
Anonim

Ответ:

увидеть процесс решения ниже;

Объяснение:

Мы решим, используя метод факторизации.

# x ^ 2 + 5 <6x #

# x ^ 2 - 6x + 5 <0 #

# x ^ 2 - x - 5x + 5 <0 #

# (x ^ 2 - x) (-5x + 5) <0 #

#x (x - 1) -5 (x - 1) <0 #

# (x - 1) (x - 5) <0 #

#x - 1 <0 или x - 5 <0 #

#x <1 или x <5 #

#Икс# меньше чем #1# а также меньше чем #5#

Отсюда утверждение, которое верно #Икс# должен лежать между # 1 и 5 #