Ответ:
Мера трех сторон (2.2361, 10.7906, 10.7906)
Объяснение:
длинаЗона
Поскольку треугольник равнобедренный, третья сторона также
Мера трех сторон (2.2361, 10.7906, 10.7906)
Два угла равнобедренного треугольника находятся в (1, 2) и (1, 7). Если площадь треугольника равна 64, каковы длины сторон треугольника?
«Длина сторон» составляет 25,722 до 3 десятичных знаков «Базовая длина» 5 Обратите внимание на то, как я показал свою работу. Математика отчасти о связи! Пусть дельта-ABC представляет точку в вопросе. Пусть длина сторон AC и BC равна s. Пусть вертикальная высота равна h. Пусть площадь равна a = 64 "единиц". ^ 2 Пусть A -> (x, y) -> ( 1,2) Пусть B -> (x, y) -> (1,7) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ color (blue) ("Определить длину AB") color (зеленый) (AB "" = "" y_2-y_1 "" = "" 7-2 "" = "5) ' ~~~~~~~~~~
Два угла равнобедренного треугольника находятся в (1, 2) и (3, 1). Если площадь треугольника равна 2, каковы длины сторон треугольника?
Найдите высоту треугольника и используйте Пифагора. Начните с вызова формулы для высоты треугольника H = (2A) / B. Мы знаем, что A = 2, поэтому на начало вопроса можно ответить, найдя базу. Данные углы могут давать одну сторону, которую мы будем называть основанием. Расстояние между двумя координатами на плоскости XY определяется по формуле sqrt ((X1-X2) ^ 2 + (Y1-Y2) ^ 2). PlugX1 = 1, X2 = 3, Y1 = 2 и Y2 = 1, чтобы получить sqrt ((- 2) ^ 2 + 1 ^ 2) или sqrt (5). Так как вам не нужно упрощать радикалы в работе, высота оказывается 4 / кв.м (5). Теперь нам нужно найти сторону. Отмечая, что рисование высоты внутри равнобедрен
Два угла равнобедренного треугольника находятся в (1, 2) и (9, 7). Если площадь треугольника равна 64, каковы длины сторон треугольника?
Длина трех сторон дельты - цвет (синий) (9.434, 14.3645, 14.3645) Длина a = sqrt ((9-1) ^ 2 + (7-2) ^ 2) = sqrt 89 = 9.434 Площадь дельты = 4: h = (Площадь) / (a / 2) = 6 4 / (9.434 / 2) = 6 4 / 4.717 = 13.5679 сторона b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((4.717) ^ 2 + (13.5679) ^ 2) b = 14.3645 Так как треугольник равнобедренный, третья сторона также = b = 14.3645