Ответ:
Уравнение прямой, проходящей через точки
Объяснение:
Вот ссылка на другой ответ, который я написал для аналогичной проблемы:
Я не уверен, какую форму уравнения вы хотите (например: точка-наклон / стандарт / наклон-перехват), поэтому я просто собираюсь сделать форму точка-наклон.
Точечно-наклонная форма
Мы знаем, что две точки на линии
Первое, что мы хотим сделать, это найти склон.
Чтобы найти склон, мы делаем
Так что давайте решать это!
Теперь нам нужен набор координат из заданного. Давайте использовать точку
Таким образом, наше уравнение линии
Упрощенная:
Ответ:
Объяснение:
# "уравнение линии в" цвете (синий) "форма наклона-пересечения" # является.
# • цвет (белый) (х) у = х + Ь #
# "где m - уклон, а b - точка пересечения y" #
# "для вычисления m используйте формулу градиента цвета (синего)" #
#color (красный) (бар (ули (| цвет (белый) (2/2) цвета (черный) (т = (y_2-y_1) / (x_2-x_1)) цвет (белый) (2/2) |))) #
# "let" (x_1, y_1) = (- 3,4) "and" (x_2, y_2) = (- 6,17) #
# RArrm = (17-4) / (- 6 - (- 3)) = 13 / (- 3) = - 13/3 #
# rArry = -13 / 3 + blarrcolor (blue) "это уравнение в частных производных" #
# "чтобы найти b используйте любую из двух указанных точек" #
# "using" (-6,17) #
# 17 = 26 + brArrb = -9 #
# rArry = -13 / 3x-9larrcolor (red) "в форме пересечения по склону" #
Уравнение прямой: 2x + 3y - 7 = 0, найдите: - (1) наклон прямой (2) уравнение прямой, перпендикулярной данной прямой и проходящей через пересечение линии x-y + 2 = 0 и 3x + y-10 = 0?
-3x + 2y-2 = 0 color (white) ("ddd") -> color (white) ("ddd") y = 3 / 2x + 1 Первая часть во многих деталях демонстрирует, как работают первые принципы. Привыкнув к ним и используя ярлыки, вы будете использовать намного меньше строк. цвет (синий) («Определить пересечение исходных уравнений») x-y + 2 = 0 "" ....... Уравнение (1) 3x + y-10 = 0 "" .... Equation ( 2) Вычтите x с обеих сторон уравнения (1), давая -y + 2 = -x Умножьте обе стороны на (-1) + y-2 = + x "" .......... Уравнение (1_a ) Использование уравнения (1_a) вместо x в уравнении (2) color (green) (3
Каково уравнение прямой, проходящей через (5,7) и перпендикулярной прямой, проходящей через следующие точки: (1,3), (- 2,8)?
(y - цвет (красный) (7)) = цвет (синий) (3/5) (x - цвет (красный) (5)) или y = 3 / 5x + 4 Сначала мы найдем наклон перпендикуляра линия. Наклон можно найти по формуле: m = (цвет (красный) (y_2) - цвет (синий) (y_1)) / (цвет (красный) (x_2) - цвет (синий) (x_1)) где m наклон и (цвет (синий) (x_1, y_1)) и (цвет (красный) (x_2, y_2)) являются двумя точками на линии. Подстановка двух пунктов задачи дает: m = (цвет (красный) (8) - цвет (синий) (3)) / (цвет (красный) (- 2) - цвет (синий) (1)) m = 5 / -3 Перпендикулярная линия будет иметь наклон (назовем его m_p), который является отрицательной инверсией линии, или m_p = -1 / m П
Каково уравнение прямой, проходящей через начало координат и перпендикулярной линии, проходящей через следующие точки: (3,7), (5,8)?
Y = -2x Прежде всего нам нужно найти градиент линии, проходящей через (3,7) и (5,8) «градиент» = (8-7) / (5-3) «градиент» = 1 / 2 Теперь, поскольку новая линия перпендикулярна линии, проходящей через 2 точки, мы можем использовать это уравнение m_1m_2 = -1, где градиенты двух разных линий при умножении должны равняться -1, если линии перпендикулярны друг другу, т.е. под прямым углом. следовательно, ваша новая линия будет иметь градиент 1 / 2m_2 = -1 m_2 = -2 Теперь мы можем использовать формулу градиента точки, чтобы найти уравнение линии y-0 = -2 (x-0) y = - 2x