Как решить для всех вещественных значений x в этом уравнении 2 cos² x = 3 sin x?

Как решить для всех вещественных значений x в этом уравнении 2 cos² x = 3 sin x?
Anonim

Ответ:

# Х = пи / 6 + 2kpi #

# Х = (5pi) / 6 + 2kpi #

Объяснение:

# 2cos ^ 2x = 3sinx #

# 2 * (1-син ^ 2x) = 3sinx #

# 2-2sin ^ 2x = 3sinx #

# 2sin ^ 2x + 3sinx-2 = 0 #

#sqrt (Δ) = SQRT (25) = 5 #

# Т_1 = (- 3-5) / 4 = -2 #

# T_2 = (- 3 + 5) / 4 = 1/2 #

# SiNx = 1/2 #

# Х = пи / 6 + 2kpi #

# Х = (5pi) / 6 + 2kpi #

к реальна