Ответ:
Смотрите процесс решения ниже:
Объяснение:
Уравнение
Это по определению вертикальная линия.
Линия, параллельная этому, также будет вертикальной. И для каждого значения
Поскольку
Уравнение прямой -3y + 4x = 9. Как написать уравнение прямой, параллельной линии и проходящей через точку (-12,6)?
Y-6 = 4/3 (x + 12) Мы будем использовать форму градиента точки, так как у нас уже есть точка, через которую пройдет линия (-12,6), а слово параллелепипед означает, что градиент двух линий должен быть таким же. чтобы найти градиент параллельной линии, мы должны найти градиент прямой, которой она параллельна. Эта строка равна -3y + 4x = 9, которую можно упростить до y = 4 / 3x-3. Это дает нам градиент 4/3. Теперь, чтобы написать уравнение, мы поместим его в эту формулу y-y_1 = m (x-x_1), где (x_1, y_1) - точка, через которую они проходят, а m - градиент.
Какое уравнение для линии, параллельной 3x-2y = -6 и проходящей через точку (8, 16)?
Y = (3/2) x + 4 graph {(3/2) x + 4 [-0,89, 35,18, 9,42, 27,44]} 3x-2y = -6 -2y = -3x-6 y = (3/2 ) x + 3 Наклон (3/2) такой же, потому что линия параллельна. Вставьте числа, чтобы найти b, которое является y-пересечением новой строки. y = (3/2) x + b 16 = (3/2) 8 + b 16 = 12 + b 4 = b Итак, новое уравнение ... y = (3/2) x + 4
Каков наклон линии, проходящей через точку (-1, 1) и параллельной линии, проходящей через (3, 6) и (1, -2)?
Ваш уклон равен (-8) / - 2 = 4. Уклоны параллельных линий такие же, как и у них одинаковый подъем и бег на графике. Наклон можно найти с помощью «slope» = (y_2-y_1) / (x_2-x_1). Поэтому, если мы введем номера линии, параллельные оригиналу, мы получим «наклон» = (-2 - 6) / (1-3). Это затем упрощается до (-8) / (- 2). Ваш рост или сумма, на которую он увеличивается, составляет -8, а ваш пробег или сумма, на которую он идет, составляет -2