Каково уравнение линии с наклоном m = -5/6, которая проходит через (-5 / 12,4 / 3)?

Каково уравнение линии с наклоном m = -5/6, которая проходит через (-5 / 12,4 / 3)?
Anonim

Ответ:

# 60x + 72y = 71 #

Объяснение:

Начиная с общей формы «наклонная точка»:

#color (белый) ("XXX") (у-haty) = т (х-hatx) #

для линии с уклоном # М # через точку # (Hatx, haty) #

мы можем вставить данные значения # мин = (- 5/6) # а также # (Hatx, haty) = (- 5 / 12,4 / 3) #

получить

#color (белый) ("XXX") (у-4/3) = (- 5/6) (х + 5/12) #

Теоретически мы можем утверждать, что это ответ, но он уродлив, поэтому давайте переведем его в «стандартную форму» (# Ax + By = С #)

Посмотрев справа, мы увидим, что для очистки знаменателей нам нужно умножить обе стороны на #72# (Т.е. # 6xx12 #)

# color (white) ("XXX") 72y-96 = -60x-25 #

Добавление # 60x + 96 # в обе стороны, чтобы сдвинуть #Икс# термин слева и константа справа:

# color (white) ("XXX") 60x + 72y = 71 #